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ABSTRACT

The naphthenic acid corrosion that can occur in oil refinery process plants at high tem-

perature (400°C) due to the corrosive nature of certain crude oils during the refining process

can be difficult to predict. Therefore, the development of online ultrasonic thickness (UT)

structural health monitoring (SHM) technology for high temperature internal pitting corrosion

of steel pipe is of interest. A sensor produced by the sol-gel ceramic fabrication process has

the potential to be deployed to monitor such pitting corrosion, and to help investigate the

mechanisms causing such corrosion. This thick-film transducer is first characterized using an

electric circuit model. The propagating elastic waves generated by the transducer are then

experimentally characterized using the dynamic photoelastic visualization method and images

of the wave-field are compared with semi-analytical modeling results. Next, the classic elastic

wave scattering theory for an embedded spherical cavity is reviewed, results are compared with

a newer scattering theory from the seismology community, that has been applied to a hemi-

spherical pit geometry. This hemispherical pit theory is extended so as to describe ultrasonic

Non-Destructive Evaluation (NDE) applications, for pitting corrosion, with the derivation of

a far-field scattering amplitude term. Data from this new scattering theory is compared with

experimental results by applying principals from the Thompson-Gray measurement model.

The initial model validation provides the basis for a possible new hemispherical pit geometric

reference standard for ultrasonic NDE corrosion applications. Next, UT SHM measurement ac-

curacy, precision, and reliability are described with a new weighted censored relative likelihood

methodology to consider the propagation of asymmetric uncertainty in quantifying thickness

measurement error. This new statistical method is experimentally demonstrated and applied to

thickness measurement data obtained in pulse-echo and pitch-catch configurations for various

time-of-flight thickness calculation methods. Finally, the plastic behavior of a corroded steel

pipe is modeled with analytical and finite element methods to generate prognosis information.
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CHAPTER 1. INTRODUCTION

Crude oils from various parts of the world have unique chemical and physical properties.

The economics behind the supply of such crude oils fluctuate over short-term and long-term

timescales. Over the last few decades, the crudes that are relatively easy to process are being

consumed and as a result, are becoming more scarce. The remaining crude supply is trending

towards properties of higher density, higher sulfur concentration, higher chloride concentration,

and higher acidity [Qing (2010)]. One drawback of processing such crudes is a higher refining

energy conversion cost. The energy conversion costs is fairly well understood and can be

quantified via unique crude oil distillation curves [Leffler (2008)]. The second drawback of

processing such crudes is a higher risk of corrosion [Ropital (2009)]. The risk around corrosion

as a result of changing crude oil feedstock properties is more complex and difficult to quantify.

1.1 Corrosion Risk

Unfortunately, there are recent examples in the oil refining industry where the corrosion

risk related to crude oil properties were not properly addressed resulting in catastrophic fail-

ures: Richmond, California in 2012; Woods Cross, Utah in 2009; and Martinez, California

in 1999 [U.S. Chemical Safety Board (2015)]. There can be two approaches to better un-

derstanding the corrosion risk associated with a specific crude oil. The first approach is the

development or improvement of chemistry based corrosion models that predict corrosion rates

at various points in the refinery as a function of crude oil feedstock properties, process con-

ditions, and metallurgical material properties. The second approach is the development or

improvement of corrosion rate measurement technology. The corrosion rate measurement must
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be at a high enough precision and sampling frequency to allow correlation with the dynamic

feedstock properties and process conditions.

The composition of crude oil varies among different reservoirs. The most prominent natu-

rally occurring components in crude oil that can lead to corrosion on refinery distillation units

are inorganic chloride salts, organic sulfur compounds, and naphthenic acids [Gutzeit (2006)].

Inorganic chloride salts in the presence of water can become hydrochloric acid and cause general

or localized thinning in the primary atmospheric tower overhead piping system at temperatures

typically below 150°C. Organic sulfur compounds can cause sulfidic corrosion at temperatures

above 260°C resulting in uniform thinning. Naphthenic acids can cause naphthenic acid cor-

rosion at temperatures between 150°C and 400°C and can result in non-uniform corrosion and

localized pitting [Garverick (1994); American Petroleum Institute (2011)]. Localized pitting

in steel is not unique to naphthenic acid corrosion, and can form under various environmental

conditions [Frankel (1998)].

1.2 Naphthenic Acid Corrosion

Crude oils that contain a higher percentage of organic acids are characterized by a high total

acid number (TAN) or naphthenic acid number (NAN). Such high TAN crudes can be found

in China, Eastern Europe, India, Russia, United States, and Venezuela. Naphthenic crudes

contain a wide range of individual acid molecules, but all can be written as [R [CH2]n COOH],

where [R] is typically a cyclopentane or cyclohexane ring [Slavcheva et al. (1999)]. The

naphthenic acids are present at various molecular weights and become distributed among a

distillation unit according to boiling point. Most naphthenic acid corrosion is concentrated in

heavy vacuum gas oil sections in the following equipment: furnace tubes, transfer lines, tower

internals, tower walls, pump internals, valves, and fittings [Slavcheva et al. (1999); Alvisi and

Lins (2011)].

1.2.1 Chemical Reactions

Naphthenic acid corrosion can be described by the chemical reactions in Equations 1.1-

1.3 [Slavcheva et al. (1999); Laredo et al. (2004)]. Equation 1.1 shows the direct attack of
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naphthenic acid [RCOOH] on the ferrous alloy [Fe] resulting in metal loss through formation

of oil soluble iron naphthenate [Fe (RCOO)2] scale. Fluid erosion can increase the spallation

and removal of the iron sulphide scale [Wu et al. (2004a)] and Equation 1.2 shows the removal

of the iron naphthenate scale by reacting with hydrogen sulphide to regenerate the naphthenic

acid and form iron sulphide precipitate. In parallel, Equation 1.3 shows the direct attack

from hydrogen sulphide [H2S] on the ferrous alloy resulting in metal loss through formation

of a protective iron sulphide [FeS] scale. In summary, naphthenic acids and sulfur containing

compounds react with the steel and each other through the formation and breakdown of various

types of scale.

Fesolid + 2RCOOHliquid → Fe (RCOO)2solid + H2gas (1.1)

Fe (RCOO)2solid + H2Sgas → FeSliquid + 2RCOOHliquid (1.2)

Fesolid + H2Sgas → FeSsolid + H2gas (1.3)

1.2.2 Surface Morphology

The rate and morphology of corrosion as a result of naphthenic acid is dependent on the

following variables: metallurgy, acid species, acid concentration, sulfur concentration, process

temperature, shear stress, and the extent of a gas phase [Slavcheva et al. (1999)]. In addition,

the formation and breakdown of scales have a history dependent influence on corrosion rate.

As a result, the naphthenic acid corrosion rate and exact morphology can be difficult to predict

in an actual refinery even with precise localized process and environmental information.

A good visual description of all potential corrosion morphologies for various types of mech-

anisms has been provided [Godard (1984)]. The field observed degradation from naphthenic

acid corrosion are a continuum of morphologies from a localized pitting to smooth uniform wall

loss. In general, higher acid concentration and lower sulfur concentration may result in more

localized corrosion. High sulfur concentration and lower acid concentration may result in more
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uniform corrosion. In addition, higher flow rates may result in more localized corrosion as a

result of increased rate of iron sulphide scale spallation in areas of higher velocity.

There have been many published laboratory and refinery studies with images and descrip-

tions of the various possible morphologies associated with Naphthenic Acid Corrosion [Wu

et al. (2004a); Qu et al. (2005, 2006); Huang et al. (2012)] with clear images of distinct uni-

form and localized corrosion topology as a result of changing acid concentration, flow rate, and

temperature in a lab environment [Wu et al. (2004b)].

A single steel pipe has been removed from service exhibiting uniform degradation in Fig-

ure 1.1, isolated single pitting in Figure 1.2, localized pitting clusters in Figure 1.3, and random

rough surface corrosion in Figure 1.4. Figures 1.1-1.4 each contain a two dimensional optical

image and a three dimensional point cloud surface mesh optical image. The possibility that all

three morphologies can occur in the same service make naphthenic acid corrosion a challenging

corrosion modeling and measurement problem.

Figure 1.1 Photograph and corresponding optical scan image of naphthenic acid corrosion

with uniform degradation. Printed with the permission of BP Products North

America Inc.
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Figure 1.2 Photograph and corresponding optical scan image of naphthenic acid corrosion

with isolated single pit degradation. Printed with the permission of BP Products

North America Inc.

Figure 1.3 Photograph and corresponding optical scan image of naphthenic acid corrosion

with localized cluster pitting degradation. Printed with the permission of BP

Products North America Inc.

Figure 1.4 Photograph and corresponding optical scan image of naphthenic acid corrosion

with rough surface degradation. Printed with the permission of BP Products

North America Inc.
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1.3 Corrosion Measurement Technology

The ideal measurement technology should satisfy two distinct, but related objectives. The

first objective is to collect a high frequency of relative wall thickness measurements in order to

help predict future corrosion rates. The relative changes in wall thickness can be correlated with

current operational parameters to improve prognostic models resulting in a better prediction of

future corrosion rates under future operational conditions. A permanently installed Structural

Health Monitoring (SHM) measurement technology may be well suited to provide such high

frequency relative thickness measurements. The use of SHM technology may decrease the

typical wall thickness measurement interval from �years� down to �days� in order to bring

more granularity to improve the validation of corrosion models, and to detect small changes

in significant corrosion rate behavior if the thickness measurement precision of the technology

can be around 0.05 mm.

The second objective is to find and precisely measure the absolute thinnest points in a

system to perform a current state �Fitness-for-service� [American Petroleum Institute (2007)]

assessment based on the mechanical design, current dimensions, and current operation condi-

tions. A non-permanent manual Non-Destructive Evaluation (NDE) measurement technology

may be well suited to provide a more random sampling of precise thickness measurements over

a larger surface area in an attempt to find the thinnest points, but access costs can limit the

practical frequency of such manual NDE measurements.

The ideal measurement approach should look to incorporate the positive aspects of both

SHM and NDE via improved monitoring technology to have highly repeatable precise thickness

measurements with extended pipe surface area coverage. The potential for localized pitting

corrosion needs to be considered for monitoring applications such as naphthenic acid corrosion.

Finally, there needs to be an intelligent merging of SHM into ongoing NDE activities and a

logical monitoring strategy among area and point measurements [Cawley et al. (2013)]. A

list of potential target technology design parameters to address both relative and absolute

measurement requirements for localized pitting corrosion are shown in Table 1.1.
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Table 1.1 Target Design Parameters for Naphthenic Acid Corrosion Monitoring

Parameter Potential Design Target

Temperature up to 400°C

Thickness Precision 0.05 mm

Spatial Resolution Precision 0.05 mm width × 0.05 mm length

Pipe Wall Thickness 3-25 mm

Pipe Diameter >114 mm

Metallurgy Low-Alloy Steel (<9%Cr & <2.5%Mo)

Precise characterization of non-uniform localized pitting corrosion in piping up to 400°C is

challenging; regardless, the measurement technology should produce repeatable measurements

within a statistically reasonable precision for realistic corrosion surfaces.

1.4 Summary

This first chapter outlined the motivation for the research topic by briefly addressing crude

oil trends related to corrosion, principals of naphthenic acid corrosion, and factors to consider

when designing corrosion measurement technology.

General Non-Destructive Evaluation (NDE) background material is summarized in Chap-

ter 2 for optical, electromagnetic, radiographic, acoustic emission, ultrasonic, and other meth-

ods. Ultimately, a permanently installed bulk wave ultrasonic monitoring technology is one of

the most applicable methods to monitor localized high-temperature corrosion, and a review of

commercial technology is included. A review of rough surface elastic wave scattering is also

provided in Chapter 2.

One potential ultrasonic monitoring technology are piezoelectric transducers produced by

the sol-gel ceramic fabrication process; this technology is reviewed in Chapter 3. The thick-film

sensors are characterized by experimental generation of a beam profile via photoelastic imaging.

Various bounding case scenarios for the ultrasonic bulk wave corrosion monitoring applica-

tion are modeled in Chapter 4.

The elastic wave scattering behavior from a single pit is described in Chapter 5. Existing

theory is reviewed, and new theory is presented as an extension of recent developments from

the seismology community. A combination of experimental measurements and modeling are
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completed for a flat surface (in Chapter 5) and for a curved surface (in Chapter 6) for immersion

measurement configurations. Contact measurement configuration modeling and experimental

results on a curved surface are shown in Chapter 7.

Statistical considerations related to permanently installed sensor accuracy, precision, and

reliability are discussed in Chapter 8. A new weighted censored relative likelihood analysis

technique is described and demonstrated with experimental data to quantify the propagation

of asymmetric measurement uncertainty.

The elastic and plastic failure criteria for steel pipe with uniform and localized pitting

corrosion is investigated via analytical and finite element methods in Chapter 9 as prognosis

information.

Conclusions and future work are described in Chapter 10.
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CHAPTER 2. BACKGROUND

This chapter reviews Non-Destructive Evaluation (NDE) inspection and monitoring meth-

ods for piping internal corrosion, and compares the methods for a high-temperature localized

corrosion monitoring application. Ultrasonic bulk wave piezoelectric transducer technology has

the potential to monitor such high-temperature localized corrosion, and a commercial review of

permanently installed bulk wave structural health monitoring ultrasonic thickness (SHM-UT)

technology is provided.

2.1 Non-Destructive Evaluation Method Review

This section reviews NDE inspection and monitoring methods for piping internal corrosion.

Prior reviews of inspection and monitoring technologies for general corrosion [Beissner and

Birring (1988)], upstream riser damage [Lozev et al. (2005)], water pipe condition [Liu and

Kleiner (2013)], underwater structures [Rizzo (2013)], in-line pipeline inspection [Bickerstaff

et al. (2002)], piping internal corrosion [Eason et al. (2015a)], as well as general NDE [Ness et al.

(1996); Gros (1996); Bray and Stanley (1997); ESR Technology (2014); Iowa State University

(2014)] are referenced. The individual methods are organized by sensory modality: optical,

electromagnetic, radiographic, acoustic emission, ultrasonic, and other.

2.1.1 Optical

Optical technologies have been previously reviewed [Zhu et al. (2011)] and are described for

both endoscopic and optical fiber sensing methods.
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2.1.1.1 Endoscopy

Endoscopic methods involve insertion of a camera for direct line-of-sight optical observation

of corrosion on the inside surface of a pipe. A continuous video feed, described as closed circuit

television (CCTV), has been demonstrated as an inspection method for internal pipe corrosion

in water [Stanic et al. (2013)] and pipeline industries. A CCTV camera and visible light source

are mounted onto a carrier and placed inside the pipe which typically contains at most a

minimal amount of liquid. The camera moves through the pipe capturing visual images of the

internal surface. The carrier can be propelled externally with a winch and pulley system, or the

carrier itself can be an automated robot crawler. CCTV systems can have multiple cameras

with pan and tilt functionality and can be oriented to capture a forward view, perpendicular

view, or rear view. Some CCTV systems also use wide-angle fisheye lenses. While guidelines

do exist to characterize and assess various types of defects, this manual method is inherently

qualitative and prone to errors as a result of lack of scale and technician fatigue. Recent work

has been completed to improve image feature detection and tracking in an attempt to make

CCTV a more quantitative inspection technique [Hansen et al. (2011a,b); Motamedi et al.

(2012); Safizadeh and Azizzadeh (2012); Kawasue and Komatsu (2013)]. Quantitative three

dimensional topography information and defect characterization can be obtained using various

optical equipment configurations mounted on a crawler inside a pipe such as visual odometry

[Hansen et al. (2013)] or laser ring triangulation [Duran et al. (2007)].

2.1.1.2 Fiber Bragg Grating

Fiber Bragg gratings are manufactured by creating specific periodic variations of the refrac-

tive index of an optical fiber core. The refractive index interfaces in the fiber can be uniformly

spaced such that reflected light at a particular wavelength, the Bragg wavelength, will undergo

constructive interference in phase resulting in an amplified signal. Any change in temperature

of the fiber and any change in the strain of the fiber can be observed as the effective Bragg

wavelength shift, λB
λ , in Equation 2.1 with λB as the Bragg wavelength, α as the thermal

expansion, ζ as the thermo-optic coefficient, ∆T as the change in temperature, ρe as the pho-
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toelastic constant of the fiber core material, and ε as the longitudinal strain [Majumder et al.

(2008)]. Monitoring strain in a structure can provide an early indicator for fatigue failure;

strain measurements are also proposed to detect an increase in hoop (circumferential) stress

as the result of wall thinning due to corrosion in a pipeline [Tennyson et al. (2007)] as shown

in Equation 2.2 with t as the average wall thickness, r as the average pipe radius, P as the

relative internal pressure, σ as the hoop stress, and E as Youngs modulus.

λB
λ

= (α+ ζ) ∆T + (1− ρe) ε (2.1)

t =
rP

σ
=
rP

εE
(2.2)

2.1.2 Electromagnetic

Electromagnetic inspection has been previously reviewed [Sophian et al. (2001)] and involves

the generation, interaction, and measurement of electromagnetic fields to detect the relative

material conductivity and permeability of a test component.

2.1.2.1 Conventional Eddy Current

A periodic magnetizing coil perpendicular to a conductive surface will create a primary

magnetic flux, Φp, described in Equation 2.3 with Np as the primary number of coils, Ip as

the primary excitation current, ω as angular frequency, and t as time. The oscillating primary

magnetic flux induces circulatory eddy currents which in turn create a secondary magnetic

flux, Φs, in opposition to the primary magnetic flux. The equilibrium flux, Φe, described

in Equation 2.4, is measured by a change in coil impedance as a result of a change in the

surface material conductivity or permeability. The penetration depth in mm, d, is described

in Equation 2.5, with ρ as electrical resistivity in Ω-cm, f as excitation frequency, and µr as a

dimensionless relative permeability.

Φp ∝ NpIp sin (ωt) (2.3)
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Φe = Φp − Φs (2.4)

d = 50

√
ρ

fµr
(2.5)

2.1.2.2 Remote Field Eddy Current

The measurement of phase lag from an exciter coil to a pickup coil placed inside a pipe has

a linear relationship to wall thickness. The phase lag, θ, is described in Equation 2.6 with x as

distance between coils, f as excitation frequency, µ as average permeability, and σ as electrical

conductivity between the two coils.

θ = x
√
πfµσ (2.6)

2.1.2.3 Pulsed Eddy Current

In pulsed eddy current for corrosion monitoring [He et al. (2012)], a step function voltage is

applied and emits electromagnetic pulses onto the outer pipe surface. The decaying magnetic

field induces eddy currents that diffuse through the wall and then rapidly decay at the pipe

inside surface. The voltage induced by the eddy currents can be measured in the time domain

and correlated to wall thickness based on the point in time at which rapid signal decay occurs.

2.1.2.4 Field Signature Method

In the field signature method [Wold and Sirnes (2007); Gan et al. (2016)], the pipe wall is

used as an active electrode area and electric current is fed through contact pins. A decrease in

wall thickness will change the electrical resistivity, which can then be monitored by a voltage

measurement decrease across the pins.
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2.1.3 Radiographic

Radiographic inspection of corrosion [Rokhlin et al. (1999); Zscherpel et al. (2000); Priyada

et al. (2011)] involves the transmission, propagation, attenuation, measurement, and interpre-

tation of energy from a source, through an object, and onto a film or detection device.

2.1.3.1 Energy Source

The most typical energy source is electromagnetic photon radiation such as Gamma rays

that emit from unstable isotopes, or X-rays that are released from an unstable condition as high

speed electrons strike a target. Sub-atomic particle energy sources such as thermal neutrons

or protons can be used with limited application.

2.1.3.2 Attenuation

Generated gamma ray intensity is directly related to the number of atoms present in the

isotope source material. Generated X-ray intensity is a function of wavelength and tube voltage.

The intensity of a beam of radiation exiting a material, I, is shown as Equation 2.7 with I0 as

the radiation beam intensity entering a material, µ as the linear attenuation coefficient, and x

as material thickness. The linear attenuation coefficient is further described in Equation 2.8

with N as Avogradros constant, σ as the total atomic attenuation coefficient, ρ as the material

density, and A as the atomic mass. The total atomic attenuation coefficient is further described

in Equation 2.9 with σpe as the photoelectric effect, σs as Compton scattering and coherent (or

Rayleigh) scattering, σpp as pair production, and σpd as photodisintegration.

I = I0e
−µx (2.7)

µ =
Nσρ

A
(2.8)

σ = σpe + σs + σpp + σpd (2.9)
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2.1.3.3 Detectors

Individual grains of traditional radiographic film react and darken with radiation exposure

as shown in Equation 2.10 with E as the film exposure, If as the radiation intensity on the

film, and T as the time of exposure. When viewing film, interpretations are made based on

the observed contrast described in Equation 2.11 with D as the density observed on the film,

and GD as the contrast measured at density D. Observed film density is further defined in

Equation 2.12 with I0 as the intensity of the viewing light source, and It as the intensity

observed on the film.

E = IfT (2.10)

GD =
dD

d (logE)
(2.11)

D = log
I0

It
(2.12)

2.1.3.4 Computed Radiography

Computed Radiography refers to flexible imaging plates similar to traditional film, but

rather the plates are exposed, digitally scanned, and then reused via a photo-stimulable phos-

phors storage process.

2.1.3.5 Digital Radiography

Digital Radiography, or Real-Time Radiography, is the use of flat or curved panel detectors

composed of amorphous silicon (or other scintillating material) arrays, and thin film transis-

tors for immediate display of the radiograph image after exposure without the need for film

development.
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2.1.3.6 Orientation

The common configuration is to have both source and detector external to the pipe of in-

terest. An orthogonal external orientation places the source perpendicular to the top surface

and the detector perpendicular to the bottom surface of the pipe. A tangential external orien-

tation places the source tangential to the pipe as to focus the beam only through an edge chord

section of the pipe wall with the detector placed in a tangential receiving orientation, often

used in applications with higher material density. A backscatter orientation places the source

and detector outside the pipe at an angle best suited to receive Compton scattered photons.

An alternative configuration can have the source placed inside the pipe with multiple curved

detectors circumferentially outside the pipe.

2.1.3.7 Computed Tomography

With computed tomography, the source and detector are rotated relative to the object

to collect multiple cross-section images which are then reconstructed to generate a composite

tomographic image.

2.1.4 Acoustic Emission

A pipe deformed under stress will generate elastic waves referred to as acoustic emissions

(AE). The source of such pipe stress is mechanical or thermal loading from normal operations;

although, additional loading can be applied for short duration AE inspections. During AE mon-

itoring, a baseline environmental noise measurement is collected and subsequent measurements

are compared to the baseline. Low amplitude changes from the baseline can be attributed

to microstructural changes, chemical reactions related to corrosion, or flaking or removal of

corrosion products from a surface [Rettig and Felsen (1976); Lackner and Tscheliesnig (2004);

Jirarungsatian and Prateepasen (2010)]. High amplitude changes from the baseline can be

generated by the growth of flaw-like cracks that introduce stress in the lattice.



www.manaraa.com

16

2.1.5 Ultrasonic

Ultrasonic NDE inspection of steel components consists of the transmission and measured

reception of acoustic energy using a wide range of possible system configurations [Rose (2004);

Ensminger and Bond (2012); Krautkramer and Krautkramer (2013); Schmerr (2016)]. Ul-

trasonic measurements at higher temperatures present unique challenges that have been re-

viewed [Kažys et al. (2008); Budimir et al. (2011); Jiang et al. (2014); Weaver et al. (2015)], as

well as ultrasonic applications for the oil and gas pipeline industry [Alobaidi et al. (2015)].

It is possible to organize the different configurations of ultrasonic measurements into the

following five categories: wave mode, wave coverage, transduction method, transducer motion,

and transducer configuration. Listed are some of the potential types of wave modes: bulk

longitudinal, bulk shear horizontal, bulk shear vertical, surface longitudinal creeping, surface

Rayleigh, guided transverse, guided symmetric lamb, and guided asymmetric lamb; potential

types of wave coverage: single point, point array, sparse array, tomographic array, mid-range,

and long-range; potential types of transduction methods: piezoelectric, electromagnetic acous-

tic transduction (EMAT), magnetostrictive, and laser; potential types of transducer motion:

manual, semi-automated, fully-automated, and permanent installation; and potential types of

transducer configurations: pulse-echo, pitch-catch, and various simultaneous interactions be-

tween multiple transducers in an array such as phased array electronic scanning, beam steering,

and beam focusing.

2.1.5.1 Bulk Wave Thickness Measurement

An ultrasonic transducer acoustically coupled to the outside of a pipe can be excited with

a voltage pulse to transmit a bulk wave from the transducer, through the pipe outside surface

interface, through the pipe wall, reflected back from the pipe inside surface interface, back

through the pipe wall, back through the pipe outside surface interface, and finally received by

the same or another transducer [Matthies (1998)]. A simplified one-dimensional wave equation

for elastic bulk wave propagation is shown in Equation 2.13 with ρ as mass density, u as the

wave front particle displacement, t as time, c as the speed of sound, and x as distance. The
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speed of sound for longitudinal, cl, and shear, cs, waves are shown in Equations 2.14 and 2.15

with λ and µ as the first and second Lamé parameters, E as Youngs modulus, ν as Poissons

ratio, and G as the shear modulus. The temperature influence on the elastic moduli has been

found to be approximately linear as shown in Equation 2.16, with c as the wave speed at a

reference temperature, dc
dT as a speed change constant, and ∆T as the temperature change.

ρ
∂2u

∂t2
= c2∂

2u

∂x2 (2.13)

cl =

√
λ+ 2µ

ρ
=

√
E (1 + ν)

(1 + ν) (1− 2/nu) ρ
(2.14)

cs =

√
µ

ρ
=

√
G

ρ
=

√
E

2 (1 + ν) ρ
(2.15)

c = c°− dc

dT
∆T (2.16)

The time domain harmonic motion solution to Equation 2.13 is shown as Equation 2.17

with A as the maximum particle displacement amplitude, ω as the angular frequency, and k

as the angular wave number. The relation between wavelength, λ, frequency, f , wave speed, c,

and wave number, k, are shown as Equation 2.18-2.20.

u = Aei(kx−ωt) (2.17)

f =
ω

2π
(2.18)

λ =
c

f
=

2πc

ω
(2.19)

k =
ω

c
(2.20)

As a sound wave reaches an interface between two different materials, the proportion re-

flected depends on the acoustic impedance mismatch between the two materials as shown in
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Equation 2.21 and 2.22 with R as the reflection coefficient, z1 as the incident material acoustic

impedance, and z2 as the transmission material acoustic impedance. Given z1 as a metal and z2

as a fluid, z1 � z2 resulting in a strong reflected signal as R ≈ −1 as is the case of a back-wall

reflection from an inside pipe wall surface.

z = ρc (2.21)

R =
z2 − z1

z2 + z1
(2.22)

In general, the thickness of the pipe wall d can be computed from Equation 2.23 with c as

the bulk (longitudinal or shear) wave speed in the material, and tr as the total round trip time

between transducer excitation and reception for a pulse-echo configuration.

d =
ctr
2

(2.23)

The received voltage signal can be processed using various filtering and envelope wrapping

techniques and analyzed using various time-of-flight calculation algorithms; different calculation

methods will result in different thickness measurement values [Barshan (2000); Jarvis and

Cegla (2012)]. The manual bulk wave method requires the temporary coupling of an ultrasonic

sensor to a pipe exterior. Permanently installed piezoelectric ultrasonic bulk wave sensors

of various wave mode, frequency, footprint, and coupling design are possible above ambient

temperature [GE Sensing & Inspection Technologies (2009); Kobayashi et al. (2009); Cegla

et al. (2011)].

2.1.5.2 Guided Waves

The use of guided waves has been broadly reviewed [Rose (2002); Raghavan and Cesnik

(2007)] and applied to measure corrosion in pipes [Rose et al. (1996); Lowe et al. (1998);

Alleyne et al. (2001); Cawley et al. (2003); Kwun et al. (2003); Demma et al. (2004); Vinogradov

(2009); Galvagni and Cawley (2013); Leinov et al. (2016)]. The long range guided waves in a

piping system are generated by a circumferential transducer; the waves propagate between the
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inside surface boundary and outside surface boundary of the pipe in torsional, longitudinal,

or transverse wave modes. The propagating wave can become distorted and have a partial

mode conversion when encountering a cross-sectional area change in the pipe wall such as

a weld or a region of localized corrosion. In a pulse-echo configuration, lower energy waves

are reflected back to the transducer to be received and interpreted. The magnitude of the

cross-sectional change associated with a reflection is relative to the received signal amplitude;

the longitudinal location of the cross-sectional change can be determined by the signal arrival

time; the circumferential location of the cross-sectional change can be determined when using

a circumferential array transducer by measuring the relative signal amplitude received by each

element in the array. Circumferentially segmented transducers allow the application of various

synthetic and adaptive focusing methods [Sun et al. (2005); Li and Rose (2006); Luo and Rose

(2007); Mu et al. (2007); Davies and Cawley (2009); Lowe et al. (2016)].

The same principles apply to higher frequency medium range guided wave techniques which

generate and propagate waves in a pipe longitudinal and circumferential direction using various

types of array configurations over distances generally less than 3 meters. In medium range

guided wave, cross-sectional area changes from reflected signals in the sound path can be

measured in a pulse-echo configuration, or attenuation can be measured using a pitch-catch

configuration, or the average wall thickness of the sound path can be correlated from the

appropriate dispersion curve to a change in acoustic velocity measured by a change in signal

arrival time in a pitch-catch configuration. A tomographic inversion technique can also be

applied in certain medium range guided wave configurations [Leonard and Hinders (2003); Van

Velsor et al. (2007); Huthwaite et al. (2013); Nagy et al. (2014); Brath et al. (2017)].

2.1.5.3 Transduction

Different transduction methods can generate and receive elastic waves of different mode,

frequency, and amplitude combinations by using various conversion processes between electrical

energy and mechanical/vibration/elastic energy. Piezoelectric transducers exhibit the piezo-

electric effect as a reversible interaction between electrical charge and mechanical stress on a

crystalline or ceramic material and are a common transduction method for industrial applica-
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tions. Magnetostrictive transducers utilize magnetostriction as a reversible interaction between

an applied electromagnetic field and a dimensional change from domain shifting and rotation

in a ferromagnetic material. Electromagnetic Acoustic Transduction (EMAT) transducers in-

duce eddy currents in the surface region which then interact with a permanent magnetic field

and generate elastic ultrasonic waves directly in the component via the Lorentz mechanism in

conductive materials and by magnetostriction in ferromagnetic materials; both as reversible

processes [Thompson (1990); MacLauchlan et al. (2004); Lunn et al. (2017)]. Laser transduc-

tion can involves a generation laser and/or a detection laser. The generation laser can quickly

heat a small area on the surface causing sudden thermal expansion, and the associated stress

reactions can generate elastic waves in the MHz to THz range; the detection laser can measure

dimensional changes on the surface from elastic waves via interferometry [Scruby and Drain

(1990); Davies et al. (1993); Matsuda et al. (2015)]. A low acoustic impedance interface is

necessary between piezoelectric and magnetostrictive transducers and the pipe surface to di-

rectly transfer mechanical stresses; rather, this coupling is not necessary for EMAT and laser

transduction methods. EMAT, laser, and other loosely contacting transduction methods have

been reviewed and compared in regard to minimum detectable surface displacement sensitiv-

ity [Cheeke (2012)].

2.1.5.4 Element Arrays

Ultrasonic array technology for NDE has been reviewed along with literature from the med-

ical and sonar fields [Drinkwater and Wilcox (2006)], and fundamentally described [Schmerr

(2015)]. The acoustic characteristics of an ultrasonic element phased array probe can be mod-

ified electronically by introducing time shifts in signals sent to and received from individual

elements. The dynamic control of the beam properties and dynamic focusing can lead to im-

proved measurement precision for various wave modes. Beam manipulations include: electronic

scanning achieved by pulsing a group of elements along a transducer in sequence, beam steering

achieved by delaying the pulsing of each element at a set rate, and beam focusing achieved by

varying the rate of delay of the pulsing of each element. Finally, another technique that can be

applied with phased array transducers is Full Matrix Capture (FMC) involving the sequential
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excitation of individual elements and reception by all elements in the array followed by the

reconstruction of the image using the Total Focusing Method (TFM), or permutations of the

TFM, to time-shift each received signal according to the focal laws for each element relative to

the inspection field location [Holmes et al. (2005); Zhang et al. (2010)].

A tomographic technique can also be applied using element arrays to collect multiple cross-

section signals which are then reconstructed and processed to generate a composite image.

Arrays can also be fabricated with a monolithic piezoelectric material and with discrete elec-

trodes, intended for use in a high temperature environment [Kirk et al. (1999)].

2.1.6 Other Modalities

Other methods can be used to monitor corrosion activity. One such measurement is an

electrical resistance or a linear polarization resistance immersion probe inserted into the process

stream. The probe contains a sacrificial coupon of the same metallurgy of the pipe. In the

electrical resistance method [Royer and Unz (2002); Li et al. (2007)], the decrease in electrical

resistance of the coupon is directly measured as the coupon losses mass as similar to the more

traditional weight loss method. In the linear polarization resistance method, for conductive

fluids, a small current is passed between two or three elements of a probe; the voltage and

current are measured, and then correlated to the electro-chemical corrosion potential [Scully

(1998); Hinds and Turnbull (2010)]. In both immersion probe methods, there is an optimization

between corrosion rate sensitivity and duration of measurement before probe replacement.

These immersion probe techniques do not directly monitor the pipe wall thickness, but rather

provide an indication of the corrosivity of the process environment [Bovankovich (1994)], and

can be influenced by deposit buildup [Wolf et al. (2016)].

Hydrogen is a product of corrosion reactions, and can be monitoring via the hydgrogen

flux method [Mishael et al. (2004)]. In this method, similar to the immersion probe methods,

the pipe wall thickness is not directly measured, but rather the corrosion activity is being

monitored.

Certain degradation corrosion mechanisms are highly temperature dependent in ferrous

material such as creep and high-temperature hydrogen attack. Temperature is often moni-
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tored only at certain points in the process, and an unexpected temperature gradient away

from the monitoring location may lead to an accelerated degradation rate. Infrared thermog-

raphy [Bagavathiappan et al. (2013)] is a method for remote monitoring and visualization of

relative temperature differences of process piping, pressure vessel, furnace tube, and storage

tank exposed surfaces.

2.2 Non-Destructive Evaluation Method Comparison

The various NDE methods for piping internal corrosion monitoring are compared. The

difference between direct and indirect wall thickness measurements is first discussed. Then

the NDE measurement method characteristics are compared in order to better understand the

relative potential for precise monitoring of high temperature localized corrosion. While many

of the NDE methods are suitable for inspection of localized internal corrosion and pitting type

defects in piping, fewer methods are suitable for precise in-service monitoring at temperatures

up to 400°C.

2.2.1 Direct and Indirect Thickness Measurement Classification

Various measurement technologies can be classified as either directly measuring the wall

thickness in a local area, or as indirectly measuring another characteristic to infer the wall

thickness in a local area or global region as summarized in Table 2.1. Some ultrasonic, elec-

tromagnetic, and radiography methods can be used to directly measure wall thickness in a

localized area. Acoustic emission, immersion probe, and hydrogen flux technology do not di-

rectly measure the physical wall thickness, but rather monitor the corrosion activity which can

then be inferred to make assumptions for the remaining wall thickness. Optical measurement

methods can profile a surface and can be combined with other direct measurement methods to

determine the wall thickness. Thermography measurement methods can be an indirect indi-

cation of wall thickness. Ultrasonic mid-range guided wave in pitch-catch mode can measure

an average wall thickness. Ultrasonic long-range guided wave in pitch-catch mode as well as

ultrasonic mid-range guided wave in a tomography arrangement can provide information on

the cross-sectional area of a pipe system.
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Table 2.1 Direct and Indirect Wall Thickness Measurement Methods

MEASUREMENT METHOD

DIRECT Wall Thickness

Ultrasonic Bulk Wave

Electromagnetic Pulsed Eddy Current

Radiography (Profile)

INDIRECT

Average Wall Thickness
Ultrasonic Mid-Range Guided Wave –

Pitch Catch

Cross-Sectional Area

Ultrasonic Long-Range Guided Wave –

Pulse Echo

Ultrasonic Mid-Range Guided Wave –

Tomography

Corrosion Rate

Acoustic Emission

Immersion Probe

Hydrogen Flux

Surface Profile Optical

Temperature Gradient Thermography

2.2.2 Measurement Method Characteristics

Characteristics of the previously described NDE measurement methods are summarized

in Table 2.2 for the application of high temperature localized corrosion wall thickness mon-

itoring; the methods are classified as either being low-potential, moderate potential, or high

potential for the various measurement characteristics [Eason et al. (2015b)]. The temperature

characteristic is based on material properties and required access proximity; for example, ra-

diographic methods do not require direct contact with the pipe surface and can be applied

at high temperatures, and therefore have high potential for the temperature characteristic.

The permanent monitoring characteristic is based on implementation; for example, endoscopic

methods require line of sight access to the internal pipe surface and are not well suited for

in-service online monitoring, and therefore have low potential for the permanent monitoring

characteristic. The direct thickness measurement characteristic is summarized in Table 2.1; as

a example, acoustic emission methods may provide an average corrosion rate which can then

be used to infer a wall thickness, and therefore have low potential for the direct measurement

characteristic, as opposed to directly measuring wall thickness in ultrasonic bulk wave methods,

which therefore have high potential for the direct measurement characteristic. The localized

measurement characteristic refers to wall thickness measurements in a relatively local region
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of interest as described in Table 1.1; for example, fiber Bragg grating methods may provide

an average wall thickness over a relatively large area, and therefore have low potential for the

localized measurement characteristic.

Table 2.2 Potential Application of Various Non-Destructive Evaluation Methods

400°C Permanent Direct Localized

Method Sub-method Surface Monitoring Measure- Measure-

Temperature Potential ment ment

Optical

Endoscopy o o o +

Fiber Bragg
+ + o o

Grating

Remote Field
o o + +/o

Electro- Eddy Current

magnetic Pulsed Eddy
+ + + +

Current

Traditional Film + o +/o +

Computed
+ o +/o +

Radiography Radiography

Digital
+ +/o +/o +

Radiography

Acoustic
+ + o o

Emission

Bulk Wave
+ + + +

Mode

Guided Wave
+ + o o

Mode

Piezoelectric
+ + + +

Transduction

Ultrasonic Electromagnetic

Acoustic +/o + + +

Transduction

Magnetostrictive
+/o + + +

Transduction

Laser
+ +/o + +

Transduction

o Low Potential +/o Moderate Potential + High Potential
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2.3 Commercial Ultrasonic SHM Technology

Guided wave and bulk wave permanently installed ultrasonic Structural Health Monitoring

(SHM) systems are discussed with a commercial technology review of bulk wave systems.

2.3.1 Guided Wave

Regarding localized corrosion, there is a large body of work on ultrasonic guided waves for

pipe condition monitoring. In general, long-range guide wave (LRGW) measurements in steel

pipes are in the 10–100 kHz range where as bulk wave measurements are around 1–10 MHz.

The bulk wave measurements provide a higher level of sensitivity required for direct thickness

measurements to be able to correlate with short term corrosion rate changes. There is a need for

the intelligent merging of bulk wave SHM-UT local point measurements, SHM-LRGW cross-

sectional area measurements, and other manual inspection activities [Cawley et al. (2013)].

2.3.2 Bulk Wave

Permanently installed Structural Health Monitoring Ultrasonic Thickness (SHM-UT) bulk

wave sensor technology has the potential for precise wall thickness corrosion monitoring as

shown in Table 2.2. Various wave modes, frequencies, footprint sizes, and coupling designs are

described for relatively low and high temperatures in Tables 2.3 and 2.4 based on a review

of commercially available information [GE Sensing & Inspection Technologies (2009); Cegla

et al. (2011); A3 Monitoring (2014); Permasense (2015, 2016); Sensorlink (2015, 2016a,b);

Berkeley Springs (2016); Cosasco (2016); Mistras (2016); Sonotec (2016); Sensor Networks

(2016); GE Oil & Gas (2017)]. In Tables 2.3 and 2.4, �Channel� is not the total number

of parallel channels, but rather the total number of channels available through multiplexing.

A single channel is used for pulse-echo configurations, and two (dual) parallel channels are

used for pitch-catch configurations. While there is currently no high-temperature SHM-UT

array commercial technology, the piezoelectric bulk-wave sol-gel sensor has the potential for

permanently installed high temperature transducer arrays [Kobayashi et al. (2009)] for precise

thickness monitoring for a naphthenic acid corrosion application as described in Table 1.1.
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Table 2.3 Low Temperature Commercial Permanently Installed Bulk Wave Sensors

Commercial Design Wave Mode
Footprint Coupling

Sensor Temperature Configuration

Sensor Networks 5 MHz Single Element

SMART PIMS® Low Compression 6mm Diameter Magnet/

XD-101 Pulse-Echo 16 Channels Adhesive

Sonotec Single Element

Sonowall S 70°C Compression -

Pulse-Echo 8 Channels

Sensor Networks 7.5 MHz Linear Array

matPIMS 80°C Compression 232mm x 25mm Magnet/

XD-401 Pulse-Echo 16 Elements Adhesive

Sensorlink

UltraMonit 90°C - - -

In Situ

A3 Monitoring 3-5 MHz Dual Element

spotOn U 120°C Compression Dry

Pitch-Catch 2 Channels

EMERSON® Single Element

PERMASENSE® 120°C ∼50mm Diameter EMAT

ET210 Pulse-Echo 1 Channel

Sensorlink 5 MHz Dual Element

PipeMonit 125°C Compression 10mm Diameter -

Swarm Pitch-Catch

MISTRAS® 5 MHz Dual Element

CALIPERAY® 150°C Compression 17mm Diameter Epoxy

LT Pitch-Catch 8 Channels

COSASCO® Single Element

ULTRACORR® 2 150°C Compression 30mm Diameter Epoxy

Pulse-Echo 8 Channels

Sensor Networks 5 MHz Dual Element

SMART PIMS® 150°C Compression 10mm Diameter Magnet/

XD-201 Pitch-Catch 16 Channels Adhesive

Sensorlink

UltraMonit 150°C - - -

Retrofit
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Table 2.4 High Temperature Commercial Permanently Installed Bulk Wave Sensors

Commercial Design Wave Mode
Footprint Coupling

Sensor Temperature Configuration

3-Sci Single Element

Wi-Corr 200°C Compression 32mm Diameter Epoxy

Pulse-Echo 1 Channel

GE® 5 MHz Single Element

RIGHTRAX® 200°C Compression 8mm X 8mm Dry

PM Pulse-Echo 64 Channels

Berkeley Springs 0.5-5 MHz Single Element

Eagle Array 230°C Compression 10-13 mm Diameter Silicone

Pulse-Echo 8 Channels

GE® 5 MHz Single Element

RIGHTRAX® 350°C Compression 7-21mm Diameter Metal Foil

HT Pulse-Echo 1 Channel

MISTRAS® 3-5 MHz Single Element

CALIPERAY® 350°C Compression 19mm Diameter Dry

HT Pulse-Echo 4 Channels

Sensor Networks 7 MHz Single Element

SMART PIMS® 500°C Compression 10mm Diameter Dry

XD-301 Pulse-Echo 16 Channels

EMERSON® ∼2 MHz Dual Element

PERMASENSE® 600°C Shear Horizontal ∼15mm x ∼3mm Dry

WT210 Pitch-Catch 2 Channels



www.manaraa.com

28

2.4 Elastic Wave Scattering - Rough Surface

The surface topography of localized corrosion can be represented by different geometries

for the purpose of predicting the bulk elastic wave scattering response as shown in Figure 2.1.

Such geometries have been studied in various research communities: flat-bottom-holes by the

NDE community, single hemispherical canyons by the seismology community, and random

rough-surface scattering by the radar community with vector modeled electromagnetic waves.

Figure 2.1 Cross-section geometry images representing a sphere or cylinder, flat bottom hole,

hemispherical pit, and random rough surface. Figure previously published [Eason

et al. (2017a)].

Wave scattering specifically from rough and random surfaces has been studied extensively

across many disciplines over at least the past 50 years. While variations exist between the

different physical forms and dimensional scales of electromagnetic, acoustic, elastic, and optical

wave scattering, many underlying principals are common.

2.4.1 Background

A description of different scattering regimes is first provided followed by rough surface

scattering work organized into various categories: i) classical and contemporary texts covering a

broad and general range of rough surface scattering, ii) analytical theory methods, iii) numerical

solution methods, iv) application of methods to specific problems with experimental result, and

v) an aggregate combination of analytical, numerical, and experimental application work.
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2.4.1.1 Scattering Regimes

The relative dimensional scale of the feature and incident wavelength for scattering problems

is transferable among applications when comparing results with dimensionless variables. One

common dimensionless variable is ka, with k as the wavenumber defined as k = ω
c , with ω as the

angular frequency defined as ω = 2πf , with f as the frequency, c as the wave speed, and a as

a dimensional length variable of the feature or flaw radius. The second common dimensionless

variable is d
λ , with d as a dimensional length variable of the feature or flaw diameter, and λ

as the wavelength defined as λ = c
f . An example relating frequency f , wavelength λ, and

dimensionless variables ka and d
λ is shown in Table 2.5 for c = 5907 m/s and a = 1.0 mm as

an example of values for an NDE flaw detection application in steel material.

Table 2.5 Dimensionless Variable Reference

Variable Values

Frequency f MHz 0 1 2 5 10 20 50 100

Wavelength λ mm - 5.9 3.0 1.2 0.59 0.30 0.12 0.059

Dimensionless ka 0 1.1 2.1 5.3 11 21 53 106

Dimensionless d
λ 0 0.3 0.7 1.7 3.4 6.8 17 34

The relatively low-frequency (long-wavelength) perturbation Rayleigh scattering regime is

typically in the 0 < ka < 1 range, the relatively high-frequency (short-wavelength) ray tracing

Geometrical Theory of Diffraction (GTD) scattering regime is typically around ka > 10, and the

mid-frequency scattering regime has limited closed-form solutions for most geometric features.

In seeking solutions to canonical problems, a range of geometries are of interest and several

are shown in Figure 2.1. While there are full-frequency range closed form solutions for three

dimensional elastic wave scattering from an embedded spherical and cylindrical geometry, there

are no such broadly accepted solutions for scattering by a single hemispherical pit or random

rough surface geometries as shown in Figure 2.1.

2.4.1.2 General

Many texts have been authored on the scattering of waves from rough surfaces; the earliest

identified discusses the scattering of electromagnetic waves in the context of radio wave reflec-
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tions from the earth, moon, and other planets [Beckmann and Spizzichino (1963)]. Another

early reference covers wave scattering more broadly with a section of the book dedicated to

rough surface scattering [Ishamaru (1978)]. Other earlier books on wave scattering from rough

surfaces are also identified [Bass and Fuks (1979); Sobczyk (1985)].

One of the most referenced texts on scattering from rough surface is authored from the

perspective of ultrasonic Non-Destructive Evaluation, but written broadly as applicable to

other physical forms [Ogilvy (1991)]. Another reference, similar to the Ogilvy text, covers

rough surface scattering in general [Voronovich (1994)]. A large encyclopedia type resource

broadly covers wave scattering theory, approximations, numerical techniques, mathematical

modeling, experimental techniques, technology practices, and experimental comparison with

theory for a range of fields and applications [Pike and Sabatier (2001)].

References are available for discipline specific topics: rough surface electromagnetic scat-

tering [Ilyinski and Slepyan (1993); Tateiba and Tsang (1996); Tsang et al. (2000); Tsang and

Kong (2001); Fung and Chen (2010); Pinel and Boulier (2013)], rough surface acoustic scatter-

ing for underwater applications [Biryukov et al. (1995); Jackson and Richardson (2006)], rough

surface seismic scattering for underground applications [Sato and Fehler (1998)], rough surface

light scattering from random nanoscales [Bennett and Mattsson (1989); Maradudin (2007)], as

well as multi-scale surface scattering applications [Fung (2015)].

2.4.1.3 Analytical Methods

The most extensive and current review paper on rough surface scattering identifies more

than 30 different analytical theoretical models [Elfouhaily and Guérin (2004)]. The various

models in this paper can be classified into three broad groups and multiple sub-groups as shown

in Table 2.6. The first broad group of analytical models are variations of the Small Perturbation

Method. The Small Perturbation Methods is generally applicable only to relatively smooth

surfaces covering the regime of small roughness in the high frequency regime. The second

broad group of analytical models are variations of the Kirchhoff Approximation. The Kirchhoff

Approximation is generally applicable to non-smooth surfaces covering the regime of large

roughness in the low frequency regime. However, the Kirchhoff Approximation is a local method



www.manaraa.com

31

based on individual points on the surface and does not take into consideration curvature or

multiple scattering. The Small Perturbation Method is generally more accurate in the high

frequency regime while the Kirchhoff Approximation is generally the better option in the low

frequency regime. The third broad group of analytical models are termed Unifying Theories

that attempt to use a single model to satisfy both low and high frequency scattering regimes.

Characteristics of the various analytical models are summarized [Elfouhaily and Guérin (2004)].

Table 2.6 Rough Surface Scattering Analytical Models [Elfouhaily and Guérin (2004)]

Group Sub-Group Sub-Sub-Group

Small Perturbation

Method

First Order

Second Order

Kirchoff Approx.

Tangent Plane Approx. Momentum Transfer Expansion

High-Frequency Regime

Physical Optics

High-Frequency Kirchoff Approx.

Geometrical Optics

Two-Scale Model

Curvature Corrections
Lynch Variational Method

Local Parabolic Approx.

Unifying Theory

Meecham-Lysanov Method

Phase Perturbation Method

Small-Slope Approx.

Quasi-Slope Expansion

Extended Small-Slope Approx.

Non-Local Small-Slope Approx.

Non-Local Curvature Approx.

Operator Expansion Method

Tilt-Invariant Approx. Local Curvature Approx.

Local Weight Approx.

Weighted Curvature Approx.

Weiner-Hermite Approach

Unified Perturbation Expansion

Full-Wave Approach
Local Spectral Expansion Method

Correction Current Method

Improved Green Function Method

Volumetric Methods

Born Approx.

Distorted-Wave Born Approx.

Mean-Field Theory

Integral Equation Method

A new theory for scalar and vector wave scattering from rough surfaces combines an ex-

tended Kirchhoff Approximation with both first and second order small slope approximations
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that result in approximations similar to the second order small perturbation method [Thompson

(2003)]. A new approach termed the curvilinear coordinate method applies a non-orthogonal co-

ordinate system for electromagnetic scattering from a plane wave incident on a one-dimensional

random rough surface [Bardier et al. (2004)]. A second kind of boundary integral equation

method for the soft-sound case is presented for both isotropic and anisotropic solids [Chandler-

Wilde et al. (2006)]. A new model termed the reduced local curvature approximation of third

order (RLCA3) is presented similar to the small slope approximation (SSA) but with better

agreement in the high-frequency limit [Elfouhaily and Johnson (2007)]. A closed-form first-

order solution based off the small perturbation method is presented and applied to electromag-

netic scattering from a layered structure with multiple rough surface interfaces [Imperatore

et al. (2009)]. Variational formulations theory is presented to address scattering from penetra-

ble rough layers for acoustic and electromagnetic waves [Lechleiter and Ritterbusch (2010)]. A

high order small perturbation method (HISPM) for electromagnetic wave scattering from rough

surfaces is presented [Guo et al. (2011)]. A closed form of the scattered field cross-spectral den-

sity function has been derived using the physical optics approximation and validated against

simulated data [Hyde et al. (2013)]. An analytical Kirchoff approximation method has been

derived incorporating surface statistics for three dimensional geometry and out of plane SH

mode conversion in an ultrasonic bulk wave scattering application [Shi et al. (2016)].

2.4.1.4 Numerical Methods

While the earliest work is on scattering theory, more recent texts discuss numerical methods

for rough surface scattering problems [Tsang et al. (2001); Jin (2005)]. A guideline is provided

for the selection of key parameters for numerical simulation of electromagnetic scattering from

random rough surfaces [Ye and Jin (2005)]. A spectral method is presented using a probabilistic

framework applied to the small perturbation method for acoustic wave scattering from rough

surfaces [Xiu and Shen (2007)]. A new semi-analytical method is applied to elastic wave fields

in isotropic and anisotropic plate structures containing anomalies of any geometry [Banerjee

and Kundu (2008)]. An analytical-numerical technique termed the Cylindrical Wave Approach

using the Small Perturbation Method is presented and applied to the scattering of a plane
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wave from a cylinder buried under a rough surface [Fiaz et al. (2012)]. A text describes

the distributed point source method (DPSM) for modeling various engineering problems as

a mesh-free computation process having the potential to use less computational resources as

compared to element based numerical techniques [Placko and Kundu (2007)]. The DSPM has

been applied to ultrasonic waves reflected from an elliptical cavity [Shelke et al. (2010)], as

well as elastic wave scattering from a random rough surface with an incident shear horizontal

wave mode [Jarvis and Cegla (2014)]. A frequency-domain finite element technique is presented

that represents the scattering matrix in the Fourier domain to capture both near-field and far-

field behavior [Wilcox and Velichko (2010)] and used to predict the far-field scattering of an

arbitrary shaped defect in anisotropic medium, presented for the isotropic case and compared

with analytical solutions [Velichko and Wilcox (2010)]. Numerical simulation of scattering

from rough surface cracks using the finite element local scattering (FELS) model is presented

in the form of a scattering matrix [Zhang et al. (2011)]. Weighted Sobolev spaces are applied

to elastic plane wave and spherical wave scattering from diffraction gratings [Elschner and Hu

(2015)]. A finite element modeling approach is compared with Kirchoff theory predictions and

experimental measurements [Pettit et al. (2015).]

2.4.1.5 Method Application

While not introducing new theoretical or numerical methods, the following references apply

existing methods to various applications. The incorporation of rough surface scattering from

the tangent plane approximation is applied to a ray propagation model for optical waves [Di-

dascalou et al. (2003)]. The Small-Slope Approximation (SSA) is applied to electromagnetic

scattering at penetrable random rough interfaces [Gilbert and Johnson (2003)]. A finite el-

ement method and Monte Carlo simulation are applied to an electromagnetic wave incident

at a low grazing angle over a randomly rough sea surface [Liu and Jin (2004)]. An approach

to combine the method of fictitious sources and the scattering-matrix method is presented for

electromagnetic problems in two dimensions [Tayeb and Enoch (2004)]. The weighted curva-

ture approximation (WCA) has been compared numerically to the method of moments (MoM)

based results for Gaussian random surfaces showing that WCA is accurate beyond the typical
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range where Small Slope and Kirchhoff Approximations are valid [Guérin et al. (2004)]. A

finite difference numerical analysis of seismic wave scattering from randomly rough interfaces

in a multi-layered medium compares the differences between two dimensional and three dimen-

sional simulations [Makinde et al. (2005)]. A one-dimensional comparison of Weighted Curva-

ture Approximation (WCA), Local Curvature Approximation (LCA), First Order Small Slope

Approximation (SSA-1), and Second Order Small Slope Approximation (SSA-2) backscattering

models is presented for an electromagnetic application [Bourlier et al. (2005)]. The incorpo-

ration of electromagnetic scattering using the Kirchhoff approximation is applied to a three

dimensional ray tracing software package [Cocheril and Vauzelle (2007)]. The elastodynamic

finite integration technique (EFIT) has been applied to acoustic scattering from an aluminum

cylinder near a rough interface [Calvo et al. (2010)]. A Small Perturbation Method is applied to

the scattering of acoustic waves at rough solid-solid interfaces [Sun and Pipe (2012)]. A finite

difference time domain solver is applied to electromagnetic surface scattering at low angles by

comparing to the Surface Integral Equation (SIE) approach [Liao and Dogaru (2012)].

2.4.1.6 Aggregate Methods

A combination of analytical methods, numerical methods, and applications include: scatter-

ing of acoustic and electromagnetic waves under various boundary conditions for rough surfaces

in two and three dimensions [Thomas (2006)], the detection of surface corrosion by ultrasonic

backscatter [Retaureau (2006)], wave propagation over large rough surfaces at low grazing an-

gles [Lai (2007)], scattering from layered rough surfaces [Kuo (2008); Tabatabaeenejad (2008)],

high frequency scattering from rough surfaces [Kurkcu (2008)], scattering of a plane wave by

an embedded corrugated surface [Yu (2008)], comparison of acoustic rough surface scattering

in two and three dimensions [Joshi (2011); Tran (2013)], simulation of high temperature ultra-

sonic data for the characterization of rough surface corrosion [Jarvis (2013)], and application

of the physical optics approximation for partially coherent illumination [Spencer (2014)].

The characterization, measurement, and statistical description of rough surfaces has been

described [Thomas (1982); Brune (1997); Whitehouse (2002); Zhao et al. (2000)], including

specific work on fractal surfaces [Russ (1994); Li et al. (2003); Franceschetti and Riccio (2006)].
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2.4.2 Theory

The most basic description of a rough surface is variation of surface height relative to a flat

reference plane. Consider a scenario shown in Figure 2.2 with two points on a flat reference

plane along a one dimensional line at position x1 and x2. The surface heights corresponding

to the points are h1 and h2. Consider a sinusoid wave transmitted at the same angle, θ1,

and at the same distance perpendicular to the reference plane for each point. Based on the

difference in time of travel, the phase difference of the reflected wave between the two points

on the surface, ∆φ, is described in Equation 2.24 with k as the wavevector modulus (related

to wavelength) and θ2 the reflection angle [Ogilvy (1991)].

Figure 2.2 Schematic showing surface roughness observed by the phase difference of reflected

signals. The phase difference is related to the incident wavelength, incident angle,

and height difference between points. Based on similar figure previously pub-

lished [Ogilvy (1991)].

∆φ = k [(h1 − h2) (cos θ1 + cos θ2) + (x2 − x2) sin θ1 − sin θ2] (2.24)

By simplifying the scenario, and assuming that the reflected signal is of the same mode as

the transmitted signal, then the reflection angle will be the same as the incident angle and can
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be considered specular scattering at each of the two points. With this simplification, θ1 = θ2,

and Equation 2.24 reduces to Equation 2.25 [Ogilvy (1991)].

∆φ = k∆h cos θ1 (2.25)

The phase difference will cause destructive interference if ∆φ ≈ π resulting in an aggregate

decrease in reflected signal amplitude from the two points. The phase difference will be con-

structive if ∆φ� π resulting in an aggregate increase in reflected signal amplitude from the two

points. A surface can be considered smooth if the phase change does not result in destructive

interference with ∆φ < π
2 [Ogilvy (1991)]. The Rayleigh parameter, Ra, is used to describe

surface roughness as shown in Equation 2.26 with σ as a measure of surface height variation

with Root-Mean-Square (RMS) deviation [Ogilvy (1991)]. A surface can be considered smooth

if Ra <
π
4 ; a surface can be considered rough if Ra ≥ π

4 .

Ra = kσ cos θ1 (2.26)

In summary, surface roughness can be observed by the phase difference of a reflected signal.

The phase difference is related to the incident wavelength, incident angle, and height difference

between points. Only the height difference is an intrinsic material characteristic; the incident

wavelength and the incident angle are characteristics of the measurement technique. Therefore,

rough surface scattering behavior is dependent on the physical surface height profile as well as

on the applied measurement technique.

2.4.2.1 Coherent and Diffuse Fields

Moving beyond two points, consider an entire surface under three different scenarios. The

first scenario is a smooth surface, the second scenario is a slightly rough surface, and the third

scenario is a very rough surface [Ogilvy (1991)].

For the smooth surface scenario, the height of every point on the surface is considered to be

the same with h1 = h2 everywhere. The result from Equation 2.25 is no phase change, ∆φ = 0,

caused by surface roughness in the reflected wave field. This reflected wave field from the flat
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surface is in the specular direction and termed the coherent field. By definition, the coherent

field at the same phase and at the same specular angle direction as compared to the incident

wave. For a smooth surface scenario, the coherent field is very strong and dominates the total

reflected wave field.

For the slightly rough surface scenario, the height of every point on the surface is not

considered to be the same with h1 6= h2 everywhere. The result from Equation 2.25 is some

phase change, ∆φ 6= 0, caused by surface roughness in the reflected wave field. Again, the

reflected wave field in the specular direction is termed the coherent field with the same phase

and as the incident wave. While the coherent field reflected from a smooth surface is very strong,

the coherent field reflected from a slightly rough surface is weaker and no longer dominates

the reflected wave field. This reduction in amplitude can be described by e−
g
2 with g as a

backscattering term described in Equation 2.27 [Ogilvy (1991)]. The scattered component

of the reflected signal not in the specular direction is termed the diffuse field. Assuming the

surface roughness profile is random, the diffuse field is scattered in random angle directions

and is not of the same phase as the incident wave; the diffuse field consists of random phase

components. For a slightly rough surface scenario, the diffuse field is present, but still weak

and contributes to part of the total reflected wave field along with the weak coherent field.

g = 4k2σ2 cos2 θ1 = 4Ra
2 (2.27)

For the very rough surface scenario, the height of every point on the surface is not considered

to be the same with h1 6= h2 everywhere. When the surface is very rough, the coherent field can

disappear and the diffuse field becomes very strong and dominates the total reflected wave field.

Again, the diffuse field from a random surface will reflect in random angle directions and be of

random phase. The amplitude of the diffuse field must be calculated from only the intensity

of the field components and ignoring the phase of the field components as the summation of

random phases will be zero.
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2.4.2.2 Polarization Modality

Wave scattering from rough surfaces can be applied to problems of various physical forms

resulting in the presence of different polarization modalities. For example, acoustic waves

consist of only a single longitudinal wave reflection mode. Electromagnetic waves consist of

two elliptically polarized reflection modes. Elastic waves consist of three bulk wave reflection

modes: longitudinal, vertical polarization, and horizontal polarization. In the case of elastic

waves, the influence of a two dimensionally rough surface can cause three reflected modes,

where a smooth surface assumption results in only two reflected modes.

Models described as scalar wave scattering are applicable for acoustic wave problems. Mod-

els described as vector wave scattering are applicable for electromagnetic wave problems, but

are also applied to elastic wave problems, possibly without a complete representation of all

three polarizations: compression, shear horizontal, and shear vertical.

2.5 Summary

This chapter reviewed NDE inspection and monitoring methods for piping internal corro-

sion, and compared the methods for a high-temperature localized corrosion monitoring appli-

cation. Ultrasonic bulk wave piezoelectric transducer technology has the potential to monitor

such high-temperature localized corrosion, and a commercial review of SHM-UT technology was

provided. There is currently no high-temperature permanently installed bulk wave ultrasonic

array commercial technology; however, transducers manufactured from the �sol-gel� ceramic

fabrication process have potential in this space. Finally, a background discussion and review

on random rough surface scattering was presented.

The hypothesis under investigation is to understand if sol-gel sensor technology can monitor

localized high-temperature corrosion with measurement precision as defined in Table 1.1. This

will be explored by characterizing sol-gel transducers (Chapter 3), understanding the measure-

ment application bounding cases (Chapter 4), elastic wave scattering behavior from a single

hemispherical pit (Chapters 5-7), ultrasonic thickness measurement statistical considerations

(Chapter 8), and pipe stress analysis methods to obtain prognosis information (Chapter 9).
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CHAPTER 3. SOL-GEL TRANSDUCER CHARACTERIZATION

Transducers manufactured from the �sol-gel� ceramic fabrication process have potential

as high-temperature permanently installed bulk wave ultrasonic array commercial technology

to satisfy the measurement application as described in Table 1.1. This chapter provides a

description and review of prior work on sol-gel sensors, characterization of such sensors by

acoustic/electric circuit models, as well as characterization of transducer incident beam profiles

by utilizing photoelastic imaging.

3.1 Sol-Gel Fabrication Process

The sol-gel ceramic fabrication process can be applied to produce the piezoelectric mate-

rial [Barrow et al. (1996)] used in thick-film ultrasonic transducers for bulk wave wall thickness

measurements [Kobayashi et al. (2009)]. This transducer design has the potential to provide a

strong and reliable permanent acoustic bond to the pipe wall surface, has customizable sensor

element array configurations to expand into larger areas of measurement coverage, and also has

the potential for installation in high temperature environment [Shih et al. (2010); Kobayashi

and Jen (2012)].

The term �sol-gel� refers to a ceramic fabrication process to manufacture piezoelectric trans-

ducers involving the following steps i) preparation of solution material and powder material,

ii) mixing of the two materials with sufficient shear forces within the fluid to maintain the

mixture as a suspension, iii) deposition of the materials onto a surface of interest, one method

is aerosol deposition with use of a mask, iv) thermal curing of the initial layer v) deposition

and curing of subsequent layers vi) final geometric changes such as slicing, vii) polarization,

and viii) wiring and encapsulation.
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An optimization problem exists between the number and thickness of individual deposition

layers in order to achieve the final thickness for the desired transducer central frequency. Thicker

individual layers can be more prone to cracking as a result of higher residual stress within each

individual layer. Thinner individual layers require more deposition steps, increasing the time

and cost of fabrication. Also, material properties such as brittleness, elasticity, and porosity

can be controlled by the various fabrication process parameters. These properties influence the

transducer bandwidth and durability.

There are different variations on the fabrication process regarding piezoelectric materials,

particle size, curing temperature, curing time, number of layers, individual layer thickness, and

total layer thickness for various sensing applications. Integration of a microwave processing

method into the sol-gel fabrication process was demonstrated to fabricate transducers for ac-

tive vibration control of a flexible structures [Ounaies (1995)]. The influence of sol-gel particle

size and heat treatment has been studied for gas sensor performance [Liu et al. (1997)]. A sol-

gel fabrication spin-coating process is described [Tanase et al. (2004)]. A vacuum filling sol-gel

precursor is described and presented along with SEM cross-section images showing the porous

nature of a sol-gel ceramic [Zhang et al. (2006)]. Annular array sol-gel transducers have been

fabricated by micromaching techniques in combination with sol-gel processing [Dorey et al.

(2007)]. Flexible singe-element and multi-element array transducers have been fabricated by

the sol-gel process [Ono et al. (2007); Wu et al. (2010); van der Heijden et al. (2016)] and

evaluated at high temperatures up to 420°C [Veilleux et al. (2013)]. Actuators, in addition to

flexible sensors, have been fabricated by the sol-gel process [Hsueh and Wu (2010)]. Sol-gel

thick-film electrical impedance and other material properties have been characterized [Pardo

et al. (2010)]. A process to control the particle size of sol-gel power is described with the

intention of a piezoelectric material 3D printing application [Huang et al. (2014)]. Ferroelectric

properties of ceramics fabricated from sol-gel powders of different chemistry have been eval-

uated up to a temperature of 350°C [Mahmood et al. (2015)]. Improvements in the sol-gel

fabrication process for high temperature ultrasonic thickness transducers have been recently

published [Searfass et al. (2016)]. Sol-gel sensors have been used in an ultrasonic thickness
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structural health monitoring application to demonstrate the photoelastic visualization method

as well as statistical uncertainty quantification methods [Eason et al. (2015a,b, 2016a,b)].

3.2 Circuit Modeling

Modeling the performance of thick-film sol-gel piezoelectric transducer behavior is based on

general transducer characterization methods [Kino (1987); Meeker (1996); Lu (2012); Sherrit

and Mukherjee (2012)] and specific examples of air-backed thick-film transducer impedance

characterization [Maréchal et al. (2006); Dorey et al. (2007); Pardo et al. (2010); Ali et al.

(2015); Mahmood et al. (2015)]. There are various circuit models available to characterize an

air backed thick-film sol-gel transducer: Three-Port-Network, Mason Circuit, Redwood, KLM,

Reeder Winslow [Reeder and Winslow (1969)], and a model specifically for air-back thick-film

sol-gel transducers [Lukacs et al. (1999, 2000)].

The Three-Port-Network and Lukacs Models are reviewed and analyzed for an air-backed

thick-film sol-gel transducer application. The Three-Port-Network Model appears to have a

realistic pattern for real and imaginary impedance values. The Lukacs Model analysis is not

applicable as only the real material parameters were used instead of the required complex

material parameters. The circuit modeling details are shown in APPENDIX A.

3.3 Photoelastic Imaging

Elastic wave propagation can be visualized in a transparent material by observing polarized

light refracted from pressure gradients via the schlieren method [Baborovsky et al. (1973)], or

from localized regions of stress via the photoelastic method. While the schlieren method can

be more sensitive to acoustic waves in liquids, the photoelastic method can observe the shear

stress mode [Yamamoto (2012)]. The earliest publication of the photoelastic method [Heide-

mann and Hoesch (1937)] occurred decades prior to the first applications to ultrasonic visual-

ization [Hanstead (1972, 1974); Wyatt (1972, 1974, 1975); Hall (1977, 1982); Sachse (1979)].

This physical model imaging technique has not been adopted as broadly as computer based

models that started to gain favor from the mid 80’s. However, modern equipment is causing
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the photoelastic imaging technique to be revisited. More current efforts are around image dig-

itization and quantification [Ginzel and Stewart (2004); Ginzel and Zhenshun (2006); Schmitte

et al. (2012); Washimori et al. (2012); An et al. (2014)] are in part a result of improved camera

and LED light source technology. A commercial photoelastic imaging system was used for this

study [Eclipse Scientific (2014)].

3.3.1 Visualization Images

The elastic wave propagation beam profiles from a manual ultrasonic contact transducer

and from a thick-film sol-gel ultrasonic transducer are characterized using a photoelastic visu-

alization imaging technique.

3.3.1.1 Manual Contact Transducer

To provide reference images for comparison with a sol-gel transducer, a 5.0 MHz flat 6.35 mm

circular PANAMETRICS® V110 [Serial #61566] manual ultrasonic contact transducer is in-

vestigated. This transducer frequency is common for manual wall thickness measurements of

steel pipe. The transducer was applied to a 19 × 65 × 110 mm soda lime glass block with

SOUNDSAFE® water based ultrasonic couplant and a dead weight contact pressure of approx-

imately 9 kPa. The transducer was excited with a 120 V square wave. The strobe delay was

adjusted to capture photoelastic images at various points in time of the initial beam propaga-

tion. The individual images are analogous to a single frame of a beam propagation video. A

sampling of four frames are shown in Figure 3.1. The primary longitudinal wave mode as well

as the edge effect shear wave mode are observable with color intensity proportional to acoustic

amplitude; lighter color correlating to a positive amplitude and darker color correlating to a

negative amplitude.

The photoelastic image frames are processed to generate the maximum absolute amplitude

beam profile as shown in Figure 3.2. The maximum and minimum pixel values are identified in

each frame for each spatial coordinate in Figures 3.2a and 3.2b. The final frame in Figure 3.2c is

subtracted to normalize the maximum and minimum amplitude images in Figures 3.2d and 3.2e.

The normalized maximum amplitude image is then filtered to remove noise below a constant
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Figure 3.1 Photoelastic images of the incident longitudinal and shear elastic waves propagat-

ing from a manual contact transducer at a) 1 µs, b) 3 µs, c) 6 µs, and d) 11 µs.

Figure previously published [Eason et al. (2016b)].

value of 4 as shown in Figure 3.2f. The normalized and filtered maximum amplitude image is

then smoothed with a 2D convolution function applying a 3 × 3 [.05 .1 .05; .1 .4 .1; .05 .1 .05]

smoothing matrix at 100 iterations as shown in Figure 3.2g. An isosurface plot is shown in

Figure 3.2h analogous to a region of focus defined by a dB threshold.

3.3.1.2 Sol-Gel Transducer

A proprietary 7.5 MHz flat 4 mm × 4 mm square ultrasonic thick-film sol-gel transducer

with a 55% -6 dB bandwidth was investigated. The transducer was applied to thin stainless

steel film which was then coupled to the same glass block with the same couplant and a dead

weight contact pressure of approximately 3 kPa. The transducer was excited with a 120V

square wave. A sampling of frames are shown in Figure 3.3. The color intensity change is much

less obvious making it difficult to identify the primary longitudinal wave mode.

The photoelastic image frames are processed the same way to generate the maximum abso-

lute amplitude beam profile as shown in Figure 3.4. The maximum and minimum pixel values

are identified in each frame for each spatial coordinate in Figures 3.4a and 3.4b. The final

frame in Figure 3.4c is subtracted to normalize the maximum and minimum amplitude images

in Figures 3.4d and 3.4e. The normalized minimum amplitude image is then filtered to remove

noise below a constant value of 3.5 as shown in Figure 3.4f. The normalized and filtered mini-

mum amplitude image is then smoothed with a two dimensional convolution function applying
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Figure 3.2 Photoelastic beam profile construction of a 5.0 MHz PANAMETRICS® V110 man-

ual transducer for: a) maximum spatial amplitude, b) minimum spatial amplitude,

c) final frame image, d) normalized maximum amplitude, e) normalized minimum

amplitude, f) filtered normalized maximum amplitude, and g) filtered smoothed

normalized maximum amplitude, and h) isosurface plot. Figure previously pub-

lished [Eason et al. (2015b)].

a 3 × 3 [.05 .1 .05; .1 .4 .1; .05 .1 .05] smoothing matrix at 100 iterations as shown in Fig-

ure 3.4g. An isosurface plot is shown in Figure 3.4h analogous to a region of focus defined by

a dB threshold.

3.3.2 Visualization Comparison

The photoelastic generated beam profile is compared with calculated near-field values and

CIVA [Calmon et al. (2006)] modeling results for the manual contact and sol-gel transducers.

3.3.2.1 Manual Contact Transducer

The classic normalized near-field length is described in Equation 3.1 [Krautkramer and

Krautkramer (2013)], with N0 as the normalized near-field, D as the transducer diameter,

f as the acoustic frequency, and c as the wave speed. For the 5.0 MHz flat 6.35 mm circular
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Figure 3.3 Photoelastic images of the incident elastic waves propagating from a proprietary

7.5 MHz thick-film sol-gel transducer. The propagating waves are difficult to ob-

serve; improved sol-gel transducer characterization results are shown in Figure 3.8.

Figure previously published [Eason et al. (2015b)].

PANAMETRICS® V110 [Serial #61566] manual ultrasonic contact transducer: D = 6.35 mm,

f = 5 MHz, and c = 5840 m/s in soda-lime glass resulting in a near-field length of 8.6 mm.

N0 =
D2f

4c
(3.1)

The transduction beam profile was modeled with CIVA commercial software [Calmon et al.

(2006)] that simulates elastodynamic wave propagation behavior based on electromagnetic wave

theory [Deschamps (1972)]. The model configuration is shown in Figure 3.5 with a soda lime

glass block specimen of 110 mm × 19 mm × 65 mm with density of 2.24 g/cm3, longitudinal

wave speed of 5840 m/s, a shear wave speed of 2460 m/s, no roughness, and no attenuation.

The manual contact transducer was modeled using CIVA as a single circular 6.35 mm

diameter contact transducer with flat focus and a Gaussian frequency spectrum centered at

5 MHz with 100% bandwidth at -6 dB. The inspection was established with a water couplant

with a density of 1 gm/cm3 and a longitudinal wave speed = 1485 m/s. The simulation was run

as a three dimensional computation in a two dimensional zone scaled to match the photoelastic

imaging window and with a uniform 0.5 mm spatial resolution.

The calculated near-field length of 8.6 mm from Equation 3.1 and CIVA model results are

shown in Figure 3.6 with a comparison to the corresponding photoelastic beam profile image

from Figure 3.2g. The beam profile from the calculated near-field, elastodynamic simulation,

and photoelastic image match relatively well.
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Figure 3.4 Photoelastic beam profile construction of a proprietary 7.5 MHz thick-film sol-gel

transducer for: a) maximum spatial amplitude, b) minimum spatial amplitude,

c) final frame image, d) normalized maximum amplitude, e) normalized minimum

amplitude, f) filtered normalized minimum amplitude, and g) filtered smoothed

normalized minimum amplitude, and h) isosurface plot. Figure previously pub-

lished [Eason et al. (2015b)].

3.3.2.2 Sol-Gel Transducer

When applying Equation 3.1 to the proprietary 7.5 MHz thick-film sol-gel transducer with

D = 4.0 mm, f = 7.5 MHz, and c = 5840 m/s, the resulting near-field length is 5.0 mm.

The same elastodynamic simulation parameters from the manual contact transducer are used

except with a single element 4 mm × 4 mm rectangular contact transducer with flat focus and

a Gaussian frequency spectrum centered at 7.5 MHz with 100% bandwidth at -6 dB.

The calculated near-field length of 5.0 mm from Equation 3.1 and CIVA model results

are shown in Figure 3.7 with a comparison to the corresponding photoelastic beam profile

image from Figure 3.2g. The beam profile from the calculated near-field and elastodynamic

simulation match well, however the photoelastic image does not. This is likely a limitation

of the photoelastic image measurement being unable to distinguish the beam profile from
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Figure 3.5 CIVA elastodynamic wave propagation model specimen and transducer configura-

tion. Figure previously published [Eason et al. (2015b)].

background noise. This region of higher background noise observed at the top of the image

in Figure 3.4c appears to coincide inversely with the beam profile void observed in Figure 3.7.

Additional work was necessary to improve light source alignment, optimize lens orientations,

increase coupling force, and investigate other sol-gel sensors to better visualize the elastic wave

propagation behavior from a thick-film sol-gel type transducer.

3.3.2.3 Improved Sol-gel Transducer Results

The sol-gel transducer visualization results are improved by optimizing the lens orientation

to increase the optical signal to noise ratio, and further improved by using automatic motor

control to incrementally adjust the strobe delay. Improved results are shown in Figure 3.8c.
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Figure 3.6 Beam profile of manual contact transducer from the CIVA elastodynamic simula-

tion results and 8.6 mm near-field from Equation 3.1 (left), and the photoelastic

image from Figure 3.2g (right). The length scale [mm] is equal and proportional.

Figure previously published [Eason et al. (2015b)].

Figure 3.7 Beam profile of thick-film sol-gel transducer from the CIVA elastodynamic simu-

lation results and 5.0 mm near-field from Equation 3.1 (left), and the photoelastic

image from Figure 3.4g (right). The length scale [mm] is equal and proportional.

Figure previously published [Eason et al. (2015b)].
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Figure 3.8 Comparison of the manual transducer calculated near-field of 8.6 mm with the

a) photoelastic image and the b) CIVA elastodynamic model image. Comparison of

the sol-gel transducer calculated near-field of 5.0 mm with the c) photoelastic image

and the d) CIVA elastodynamic model image. Figure previously published [Eason

et al. (2016b)].
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3.4 Summary

This chapter provided a description and review of prior work on sol-gel sensors, addressed

an acoustic/electric circuit approach to characterize thick-film air backed transducers, and

presented a photoelastic imaging technique to characterize the incident beam profile of such

transducers. The generated beam profile from a calculated near-field, elastodynamic simulation,

and photoelastic imaging technique match well for both manual contact transducer and thick-

film sol-gel transducer. The next few chapters discuss characterization of the reflected and

scattered elastic waves from corrosion surfaces.
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CHAPTER 4. ELASTIC WAVE SCATTERING - FLAT SURFACE -

CASES

Various ultrasonic bulk wave bounding case scenarios for a corrosion pitting contact mea-

surement application are presented to validate the quasi-plane wave approximation. Each case

is modeled using CIVA [Calmon et al. (2006)] semi-analytical elastodynamic commercial ultra-

sonic simulation tool using Auld reciprocity, ray tracing, and a pencil beam model technique.

4.1 Modeling Results

The test specimen is a steel plate of 100 mm wide, 100 mm long, and either 3 mm or

25 mm thick with a density of 7.8 gm/cm3, longitudinal wave speed of 5900 m/s, and a shear

wave speed of 3230 m/s. The probe is a single circular element flat contact longitudinal wave

transducer of diameters 1 mm or 10 mm. The probe has a flat 0 degree wedge of the same

diameter as the transducer, thickness of 0.01 mm, and same material properties as the test

specimen. The transducer has 100% bandwidth at -3 dB with a central frequency of 1 MHz

or 10 MHz with a Gaussian filter and 512 sampling points per signal with a 0 degree phase

offset. The coupling material is water with a density of 1 gm/cm3 and longitudinal wave speed

of 1483 m/s. The bottom and top surface medium is air with a density of 0.001 gm/cm3 and

longitudinal wave speed of 3330 m/s. The simulation uses a two dimensional computation of

longitudinal and shear waves considering direct mode, mode conversion, back-wall reflection,

and internal reflection. The computation zone has a 0.05 mm step size for the 3 mm thickness

and a 0.25 mm step size for the 25 mm thickness. Neither attenuation nor noise is considered.

A total of eight bounding cases are shown as spatial amplitude plots for various points in time

and as the maximum spatial amplitude among all points in time in Figures 4.1-4.8.
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Figure 4.1 Simulation results for 25 mm thick specimen, 10 mm probe diameter, and 1 MHz

center frequency showing amplitude at 2 µs, 4 µs, 6 µs, 8 µs, and maximum

amplitude over time.
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Figure 4.2 Simulation results for 25 mm thick specimen, 10 mm probe diameter, and 10 MHz

center frequency showing amplitude at 2 µs, 4 µs, 6 µs, 8 µs, and maximum

amplitude over time.



www.manaraa.com

54

Figure 4.3 Simulation results for 25 mm thick specimen, 1 mm probe diameter, and 1 MHz

center frequency showing amplitude at 2 µs, 4 µs, 6 µs, 8 µs, and maximum

amplitude over time.
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Figure 4.4 Simulation results for 25 mm thick specimen, 1 mm probe diameter, and 10 MHz

center frequency showing amplitude at 2 µs, 4 µs, 6 µs, 8 µs, and maximum

amplitude over time.
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Figure 4.5 Simulation results for 3 mm thick specimen, 10 mm probe diameter, and 1 MHz

center frequency showing amplitude at 0.2 µs, 0.4 µs, 0.6 µs, 0.8 µs, 1.0 µs and

maximum amplitude over time.
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Figure 4.6 Simulation results for 3 mm thick specimen, 10 mm probe diameter, and 10 MHz

center frequency showing amplitude at 0.2 µs, 0.4 µs, 0.6 µs, 0.8 µs, 1.0 µs and

maximum amplitude over time.
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Figure 4.7 Simulation results for 3 mm thick specimen, 1 mm probe diameter, and 1 MHz

center frequency showing amplitude at 0.2 µs, 0.4 µs, 0.6 µs, 0.8 µs, 1.0 µs and

maximum amplitude over time.
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Figure 4.8 Simulation results for 3 mm thick specimen, 1 mm probe diameter, and 10 MHz

center frequency showing amplitude at 0.2 µs, 0.4 µs, 0.6 µs, 0.8 µs, 1.0 µs and

maximum amplitude over time.
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4.2 Summary

A total of eight bounding case scenarios for bulk wave propagation in a steel corrosion

monitoring application are presented as CIVA semi-analytical simulation results. The limits of

the quasi-plane wave approximation is understood and used for the scattering theory work in

Chapters 5-7.
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CHAPTER 5. ELASTIC WAVE SCATTERING - FLAT SURFACE -

SINGLE FLAW

In many cases in chemical plants an ultrasonic instrument is used to measure pipe wall

thickness. Such measurements give a nominal wall thickness that may not adequately report

and reflect discrete features such as some forms of pitting corrosion. Adequate characterization

of the topography of corrosion on the inner surface of pipes remains a challenge. Improving

this characterization of wall thickness and corrosion profile may improve safe operating pressure

estimations and remaining life assessments.

A canonical problem is the characterization of a hemispherical pit in the inner surface of

a pipe. Past studies have used numerical models to analyze this geometry. Description of

elastic wave scattering by individual pits with an analytical solution, has until recently been

elusive. Work in the seismology community has however proposed a solution to give surface

displacements near a canyon or valley for various wave modes [Lee and Zhu (2014)].

The foundational analytical theory for elastic wave scattering from an embedded spherical

cavity is reviewed. An approach gave a new closed-form full-frequency analytical scattering

theory for normally incident longitudinal wave modes onto a three dimensional hemispherical

canyon [Lee and Zhu (2014)]. This approach is extended to generate new half-space far-field

scattering amplitude terms for a single hemispherical pit geometry representative of isolated

pitting corrosion. The resulting data are presented in a wavelength to feature scale in ka

(wavenumber space) where canyon and corrosion pit to wavelength relationships are similar.

Model results were then tested against experimental data. The experimental data are

put into the framework and modality for extracting far-field scattering amplitude theoretical

values by applying principals from the Thompson-Gray measurement model [Thompson and

Gray (1983); Schmerr and Song (2007); Schmerr (2016)]. The new theory is for the full-
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frequency ka range, however measurements are focused on the mid-frequency scattering region,

which is of particular interest as it is between that covered by relatively low-frequency (long-

wavelength) perturbation solutions and relatively high-frequency (short-wavelength) ray theory.

Experimental attenuation data are measured and reported that are in good agreement with

literature values. Modeling results are then compared with experimental scattering amplitudes

in the 6-10 ka scattering regime for the case of a 2 mm diameter hemispherical pit in a flat

steel block.

5.1 Background

The geometry of a hemispherical pit in a plate and canyon/valley in half-spaces have been

studied by the NDE and seismology communities respectively for various incident wave modes

to investigate scattering and surface displacement behavior. In seeking solutions to canonical

problems, a range of geometries are of interest and several are shown in Figure 2.1. In seeking

analytical solutions, attention first considered the spherical cavity, remote from a far surface.

Attention then considered the flat bottom hole and moved to address the hemispherical pit,

while still recognizing that the ultimate challenge is the general rough surface. A general review

of elastic waves in solids that includes a section on diffraction and scattering of elastic waves is

provided [Pao (1983)]. Two specific geometries are considered, the embedded spherical cavity

and the single hemispherical pit.

5.1.1 Embedded Spherical Cavity

The earliest work on elastic (vector) wave scattering from a spherical inclusion [Clebsch

(1863)] preceded the foundational treatise by Rayleigh that addressed, among other topics,

impinging acoustic (scalar) plane waves on spherical and circular cylindrical obstacles [Rayleigh

(1877)]. Sezawa later described acoustic and elastic wave scattering by a variety of rigid and

cavity objects of circular cylindrical, elliptical cylindrical, and spherical shape [Sezawa (1927)].

The theory advanced when Ying and Truell derived the analytical solution for elastic scat-

tering of an incident longitudinal wave on an isotropically elastic sphere [Ying and Truell (1956)]

that was then followed by the derivation for the case of an incident shear wave [Einspruch et al.
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(1960)]. Scattering cross section results were subsequently presented as a function of normal-

ized wavelength for a selection of materials [Johnson and Truell (1965); Kraft (1971)]. Pao and

Mow then presented a more elegant matrix form with common terms among the general elastic

solution and the specific rigid, cavity, fluid filled sphere, and acoustic scattering solutions [Pao

and Mow (1962, 1963); Mow and Pao (1971)]. This matrix form is now the common notation

for the wave coefficient separation of variables solution for scattering from an elastic sphere in

an elastic medium [Graff (1975); Schmerr (2016)] with many examples in the literature compar-

ing analytical, experimental, and numerical results [Zhang and Bond (1989); Ness (1994)]. In

reviewing the literature, early papers do contain some inconsistencies in some equations; more

recently, an attempt was made to review and re-derive the analytical solution for scattering of

elastic waves by a single spherical obstacle [Avila-Carrera and Sanchez-Sesma (2006)].

5.1.2 Single Hemispherical Pit

Trifunac first presented a closed-form analytical solution for the normal incident in-plane

shear horizontal (SH) wave mode for a two dimensional geometry [Trifunac (1971, 1973)]. This

problem was then addressed by Lee who formulated a wave equation coefficient matrix, which is

then solved by truncation and inversion for the incident longitudinal, shear vertical, and shear

horizontal wave modes for various incident angles for a three dimensional geometry [Lee (1978,

1982, 1984)]. Sanchez-Sesma et al. applied various iterations of a boundary integral method

initially for the incident shear horizontal wave mode for a two dimensional geometry [Sanchez-

Sesma and Esquivel (1979); Sanchez-Sesma and Rosenblueth (1979)], and later expanded this

approach to the incident longitudinal and shear wave modes for various angles as well as

the incident Rayleigh wave mode for a three dimensional geometry [Sanchez-Sesma (1983);

Sanchez-Sesma and Campillo (1991); Sanchez-Sesma and Luzón (1995)]. Khair et al. applied a

numerical approach using both finite element and boundary integral methods for the incident

longitudinal and shear vertical wave modes with various incident angles for a three dimensional

geometry [Khair et al. (1989a,b)].

Albach and Bond, were among the first to consider this geometry as an NDE problem for

scattering by pitting corrosion [Albach and Bond (1990)]. They applied a boundary method for
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the 60 degree incident longitudinal wave mode and the normal incident shear wave mode for a

three dimensional geometry. Their data and that by Sanchez-Sesma were in good agreement.

Related work by Zhu, Bond, and Albach [Zhu et al. (1992)] reported experimental measure-

ments of surface displacements of the scattered far-field Rayleigh wave mode for the incident

longitudinal wave mode for various incident angles. Since that time there seems to have been

limited work on fundamental aspects of scattering by pitting/canyons.

In more recent work, Lee and Zhu have now reported a closed-form analytical expression

for the wave equation coefficients obtained by using a superposition of two models with a

coordinate system transform. This model only considers the odd orders of the spherical Bessel

and Legendre Polynomial functions for a normally incident longitudinal wave mode for a three

dimensional geometry [Lee and Zhu (2014)].

5.1.3 Scattering Amplitude Validation

Data in seismology have typically been reported in terms of surface displacements, given

that local amplification effects near topography is a key topic of interest. Some studies have

considered perturbation techniques for low ka values [Gilbert and Knopoff (1960)], and ray

theory for high ka values [Lee and Langston (1983)]. The particular challenge is in the mid-

frequency scattering regime.

To test the validity of new model data, the process to extract the theoretical far-field

scattering amplitudes from measured or modeled experimental voltage response values can be

completed using principals derived from the Thompson-Gray measurement model [Thompson

and Gray (1983); Schmerr and Song (2007); Schmerr (2016)]. This approach is used to iso-

late the scattering source from the feature of interest, from other physical and experimental

influences on the scattered data, which enables wavenumber space ka scattering amplitudes to

be reported. For the case of a hemispherical pit, the scattering amplitude term is modified to

account for the presence of a stress-free half-space [Eason et al. (2017a,b)].



www.manaraa.com

65

5.2 Theory

The analysis for the scattering from a hemispherical pit is an extension of that for the

spherical cavity and the present work has been reported in a series of publications [Eason et al.

(2017a,b,c)].

5.2.1 Embedded Spherical Cavity

For the sake of completeness, the theory presented in this section has been summarized

from previous work [Ying and Truell (1956); Johnson and Truell (1965); Pao and Mow (1963);

Mow and Pao (1971); Schmerr (2016)] and is presented correcting inconsistencies and applying

a common notation.

5.2.1.1 Wave Potential Model

Consider the spherical coordinates system shown in Figure 5.1 for a plane wave impinging

on a spherical cavity. The elastic wave displacement vector u is described in Equation 5.1 with

Φ as the longitudinal wave potential (not to be confused with the φ coordinate) and Ψ as the

shear wave potential.

u = ∇Φ +∇×
(
∂Ψ

∂θ
eφ

)
(5.1)

The solution to Equation 5.1, considering a harmonically periodic wave, is shown in Equa-

tions 5.2 and 5.3 as the Helmholtz equations with kl as the longitudinal wavenumber and ks

as the shear wavenumber as defined in Equations 5.4 and 5.5 with Λl as the longitudinal wave-

length, Λs as the shear wavelength, ω as the angular frequency, ρ as the material density, and

λ and µ as the Lamé parameters as defined in Equations 5.6 and 5.7 with cl as the longitudinal

wave speed and cs as the shear wave speed.

∇2Φ + kl
2Φ = 0 (5.2)

∇2Ψ + ks
2Ψ = 0 (5.3)
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Figure 5.1 Coordinates for impinging plane wave on a spherical cavity. Figure previously

published [Eason et al. (2017a)].

kl =
2π

Λl
= ω

√
ρ

λ+ 2µ
(5.4)

ks =
2π

Λs
= ω

√
ρ

µ
(5.5)

λ = ρ
(
cl

2 − 2cs
2
)

(5.6)

µ = ρcs
2 (5.7)

For the case of an incident longitudinal wave, the total longitudinal wave potential Φ is a

sum of the incident longitudinal wave potential Φi and the scattered longitudinal wave potential

Φs as shown in Equation 5.8; the total shear wave potential Ψ consists of only the scattered

shear wave potential Ψ s as shown in Equation 5.9.

Φ = Φi + Φs (5.8)
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Ψ = Ψs (5.9)

The incident longitudinal wave potential Φi can be represented in planar coordinates as

shown in Equation 5.10 with z as linear distance and klΦ0 as the incident wave amplitude. Al-

ternatively, the incident longitudinal wave potential can be represented in spherical coordinates

as shown in Equation 5.11 with jn as the spherical Bessel function of the first kind of order n,

and Pn as the 0th order Legendre polynomial of degree n. The scattered longitudinal and shear

wave potentials are shown in Equations 5.12 and 5.13 with An as the longitudinal wave equation

coefficient, Bn as the shear wave equation coefficient, and hn as the spherical Bessel function

of the third kind (which is also the spherical Hankel function of the first kind) of order n. The

relation between Bessel and spherical Bessel functions are shown in Equations 5.14 and 5.15.

Φi = Φ0e
i(klz−ωt) (5.10)

Φi = Φ0

∞∑
n=0

in (2n+ 1) jn (klr)Pn (cos θ) (5.11)

Φs =
∞∑
n=0

Anhn (klr)Pn (cos θ) (5.12)

Ψs =

∞∑
n=0

Bnhn (ksr)Pn (cos θ) (5.13)

jn (ζ) =

√
π

2ζ
Jn+ 1

2
(ζ) (5.14)

hn (ζ) =

√
π

2ζ
Hn+ 1

2
(ζ) (5.15)

5.2.1.2 Scattering Cross-section

In characterization of a scattering response and in inverse problems, one metric or signature

is the scattering cross-section γ which is the ratio of total scattered energy per unit time (power)
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to the incident wave energy per unit time per unit area (intensity) as shown in Equation 5.16.

The normalized scattering cross-section γN is shown in Equation 5.17 with a as the sphere

radius.

γ = 4π
∞∑
n=0

1

2n+ 1

(
|An|2 + n (n+ 1)

kl
ks
|Bn|2

)
(5.16)

γN =
γ

πa2
(5.17)

5.2.1.3 Wave Equation Coefficients

The boundary conditions for the case of a spherical cavity can be applied, and the wave

equation coefficients An and Bn from Equation 5.16 have been defined [Ying and Truell (1956)]

solely as a function of kl and ks in Equations 5.18-5.20.

An = (−i)(n−1) (2n+ 1)
1

kl

An
′

∆n
(5.18)

Bn = (−i)(n−1) (2n+ 1)
1

kl

2 (n− 1) (n+ 2)− (ksa)2

kla

1

∆n
(5.19)

An
′

∆n

 = (ksa)2
(

(1− n) (2n+ 1) + 1
2 (ksa)2

)jn (kla)

hn (kla)

hn (ksa)

+ksa
(

2n (n− 1) (n+ 2)− (ksa)2
)jn (kla)

hn (kla)

hn+1 (ksa)

+2kla
((
n2 − 1

)
(n+ 2)− (ksa)2

)jn+1 (kla)

hn+1 (kla)

hn (ksa)

−2 (kla) (ksa) (n− 1) (n+ 2)

jn+1 (kla)

hn+1 (kla)

hn+1 (ksa)

(5.20)

A more elegant form of the wave equation coefficients utilize the relationship between stress

and displacement as shown in Equation 5.21 in dyadic notation with σ as the stress tensor

and I as the identity tensor. The boundary conditions for the case of a spherical cavity can be
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applied such that the wave equation coefficients are alternatively defined in Equations 5.22-5.30

with the individual E matrix terms defined [Pao and Mow (1963); Mow and Pao (1971)] solely

as a function of kl and ks.

σ = λ (∇ · u) I + 2µ (∇u + u∇) (5.21)

E31 E32

E41 E42


An
Bn

 = Φ0

E3

E4

 (5.22)

An = Φ0
E42E3 − E32E4

E31E42 − E32E41
(5.23)

Bn = Φ0
E31E4 − E41E3

E31E42 − E32E41
(5.24)

E31 =

(
n2 − n− k2

sa
2

2

)
hn (kla) + 2klahn+1 (kla) ≡ E(3)

11 (5.25)

E32 = −n (n+ 1) [(n− 1)hn (ksa)− ksahn+1 (ksa)] ≡ E(3)
12 (5.26)

E41 = (n− 1)hn (kla)− klahn+1 (kla) ≡ E(3)
41 (5.27)

E42 = −
(
n2 − 1− k2

sa
2

2

)
hn (ksa)− ksahn+1 (ksa) ≡ E(3)

42 (5.28)

E3 = −in (2n+ 1)

[(
n2 − n− k2

sa
2

2

)
jn (kla) + 2klajn+1 (kla)

]
≡ E

(1)
11

−in (2n+ 1)
(5.29)

E4 = −in (2n+ 1) [(n− 1) jn (kla)− klajn+1 (kla)] ≡ E
(1)
41

−in (2n+ 1)
(5.30)



www.manaraa.com

70

5.2.1.4 Scattering Amplitude

For the case of the radial scattering of an incident longitudinal wave in the z direction, the

normalized longitudinal wave far-field scattering amplitude AL;L (ez; er) and normalized shear

wave far-field scattering amplitude AS;L (ez; er) are related to the incident wave amplitude

klΦ0 and corresponding wave equation coefficients as a function of θ as shown in Equations 5.31

and 5.32 [Schmerr (2016)].

AL;L (ez; er) =

[
1

klΦ0

∞∑
n=0

(−i)n+1AnPn (cos θ)

]
er (5.31)

AS;L (ez; er) =

[
1

klΦ0

∞∑
n=0

(−i)n+1BnP
1
n (cos θ)

]
eθ (5.32)

5.2.1.5 Solution Convergence

The analytical solution for the wave equation is in the form of an infinite series that will

converge if solved with terms of sufficient order. Plots which show the converging solutions

evaluated numerically have been presented in literature as a function of normalized wave-

length [Johnson and Truell (1965); Kraft (1971)] from Equation 5.17. These solutions have

been regenerated, and then over-layed on top of the classical plots as shown in Figures 5.2

and 5.3 [Eason et al. (2017c)]. The new data has converged and is in very close agreement

with prior results; one exception in Figure 5.3 where the data appears to be inconsistent is an

exchange in �Hypothetical Material� and �Polyethylene� for ka greater than 1.

In addition to the normalized scattering cross-section plots, the same method has been

applied to demonstrate a converging solution in Figure 5.4 for the far-field scattering amplitude

term from Equation 5.31. The current work used 50 terms to achieve convergence such that the

maximum partial sum of the highest order of any solution was infinitesimally small at < 10−30

for a ka value up to 20. The convergence shown in Figures 5.2-5.4 and agreement with prior

data shown in Figures 5.2 and 5.3 validate the current code used for an embedded spherical

cavity; the code used for a single hemispherical pit is very similar.
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Figure 5.2 Normalized scattering cross-sectional area for an embedded cylinder for various

elastic materials. Original plot [Johnson and Truell (1965)] overlayed with current

author’s solution to show convergence. Figure previously published [Eason et al.

(2017a)].
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Figure 5.3 Normalized scattering cross-sectional area for an embedded cylinder for various

elastic materials. Original plot [Kraft (1971)] overlayed with current author’s

solution to show convergence. Slight difference in �Hypothetical Material� and

�Polyethylene� for ka greater than 1 may likely be an original plotting error. Listed

values are material wavenumber ratio kl/ks. Figure previously published [Eason

et al. (2017c)].
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Figure 5.4 Existing normalized far-field scattering amplitude theory
∣∣AL;L

∣∣ 2Φ0
a for an embed-

ded spherical cavity from Equation 5.31. Solution shown to converge for various

material wavenumber ratios kl/ks: Hypothetical Material �Hyp� = 5.0, Polyethy-

lene �C2H4� = 3.6, Gold �Au� = 2.7, Aluminum �Al� = 2.1, Steel �Fe� = 1.8,

and Beryllium �Be� = 1.5.
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5.2.2 Single Hemispherical Pit

The theory presented in this section is derived from previously published work [Lee and

Zhu (2014)]; there is an adjustment to two variable definitions (E
(3)
13 → E32 and E

(3)
43 → E42)

to be consist with earlier work [Pao and Mow (1962, 1963); Mow and Pao (1971)], and also the

introduction of a simpler notation to account for the odd integer index term. These closed-

form analytical expressions were originally used in the seismology community to study surface

displacements. The expressions are expanded here to give far-field scattering amplitude terms

of interest to the NDE community for the case of a normally incident longitudinal wave for a

three dimensional pit geometry.

5.2.2.1 Wave Potential Model

Consider two full-space models of an incident longitudinal wave on an embedded spherical

cavity: an �upward� incident wave model and a �downward� incident wave model. The models

are symmetric about the x-y plane as shown in Figures 5.5 and 5.6 with �u� and �d� subscripts

for coordinate system and wave potential variables. The incident and scattered wave potentials

are described in Equations 5.33-5.38 for the corresponding model spherical coordinates system.

Figure 5.5 Upward incident longitudinal wave model for an embedded spherical cavity. Figure

previously published [Eason et al. (2017a)].
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Figure 5.6 Downward incident longitudinal wave model for an embedded spherical cavity.

Figure previously published [Eason et al. (2017a)].

Φu
i = Φ0

∞∑
n=0

in (2n+ 1) jn (klru)Pn (cos θu) (5.33)

Φu
s =

∞∑
n=0

Anhn (klru)Pn (cos θu) (5.34)

Ψu
s =

∞∑
n=0

Bnhn (ksru)Pn (cos θu) (5.35)

Φd
i = Φ0

∞∑
n=0

in (2n+ 1) jn (klrd)Pn (cos θd) (5.36)

Φd
s =

∞∑
n=0

Anhn (klrd)Pn (cos θd) (5.37)

Ψd
s =

∞∑
n=0

Bnhn (ksrd)Pn (cos θd) (5.38)
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The coordinate systems are transformed as described in Equations 5.39 and 5.40 resulting

in new terms for the downward model longitudinal and shear scattered wave potentials as

described in Equations 5.41 and 5.42.

rd = ru = r (5.39)

cos θd = − cos θu = − cos θ (5.40)

Φd
s =

∞∑
n=0

Anhn (klr) (−1)n Pn (cos θ) (5.41)

Ψd
s =

∞∑
n=0

Bnhn (ksr) (−1)n Pn (cos θ) (5.42)

Now consider a half-space model shown in Figure 5.7 as a superposition of the two full-space

upward and downward models. The resulting longitudinal and scattered wave potentials are

described in Equations 5.43-5.48 as functions of the odd order terms of the spherical Bessel

and Legendre functions [Lee and Zhu (2014)].

Figure 5.7 Incident longitudinal wave model on a hemispherical half-space. Figure previously

published [Eason et al. (2017a)].
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Φs = Φu
s − Φd

s (5.43)

Φs =
∞∑
n=0

Anhn (klr)Pn (cos θ)−
∞∑
n=0

Anhn (klr) (−1)n Pn (cos θ) (5.44)

Φs =

∞∑
n=0

2A2n+1h2n+1 (klr)P2n+1 (cos θ) (5.45)

Ψs = Ψu
s −Ψd

s (5.46)

Ψs =

∞∑
n=0

Bnhn (ksr)Pn (cos θ)−
∞∑
n=0

Bnhn (ksr) (−1)n Pn (cos θ) (5.47)

Ψs =
∞∑
n=0

2B2n+1h2n+1 (ksr)P2n+1 (cos θ) (5.48)

5.2.2.2 Wave Equation Coefficients

Appropriate zero normal stress and zero shear stress boundary conditions are applied on

the half-space surface (z = 0 , θ = π
2 ) and on the pit surface (r = a) to determine solutions

for the wave equation coefficients. An odd index term is applied as shown in Equation 5.49

to simplify notation with the resulting longitudinal and shear wave equation coefficients being

shown in Equations 5.50 and 5.51 resolving some inconsistencies as well as making notation

adjustments as compared to that previously reported [Lee and Zhu (2014)].

m = 2n+ 1 (5.49)

Am = 2A2n+1 = 2Φ0

(
E42E3 − E32E4

E31E42 − E32E41

)
m

(5.50)

Bm = 2B2n+1 = 2Φ0

(
E31E4 − E41E3

E31E42 − E32E41

)
m

(5.51)
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5.2.2.3 Scattering Amplitude

As a result of the superposition, it was determined that the corresponding half-space far-

field scattering amplitudes should be normalized by an additional kla term as shown in Equa-

tions 5.52 and 5.53 [Eason et al. (2017a,b)]. As a result of the half-space, the superscript

notation �h� is added to distinguish these relationships from those in Equations 5.31 and 5.32.

AL;L (ez; er)
h

=

[
1

kla

1

klΦ0

∞∑
n=0

(−i)m+1AmPm (cos θ)

]
er (5.52)

AS;L (ez; er)
h

=

[
1

kla

1

klΦ0

∞∑
n=0

(−i)m+1BmP
1
m (cos θ)

]
eθ (5.53)

This new theoretic relationship between the spherical cavity and the hemispherical pit half-

space scattering amplitudes differs by a factor of kla as is shown in Equation 5.54 [Eason et al.

(2017a,b)] with simplified notation to consider only normal incident longitudinal and normal

reflected longitudinal wave modes.

Ah =
A

kla
(5.54)

5.2.2.4 Solution Convergence

The far-field scattering amplitude for a hemispherical pit are shown in Figure 5.8 with the

same materials and scaling shown for the embedded spherical cavity in Figure 5.4. A direct

comparison of the embedded spherical cavity far-field scattering amplitude and the half-space

hemispherical pit far-field scattering amplitude for steel material is shown in Figure 5.9.

The code used for the hemispherical pit is very similar to the code used for an embedded

spherical cavity, the latter being validated by convergence and agreement with prior data.

Similar to the embedded spherical cavity, the hemispherical pit work used 50 terms to achieve

convergence such that the maximum partial sum of the highest order of any solution was

infinitesimally small at < 10−30 for a ka value up to 20. While convergence is achieved for

the hemispherical pit code, unfortunately there is no prior scattering amplitude data available
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for a comparison. Therefore, experimental work is required to generate new data for the

hemispherical pit scattering amplitude model validation.

Figure 5.8 New normalized far-field scattering amplitude theory
∣∣AL;L

∣∣ 2Φ0
a for a half-space

hemispherical pit from Equation 5.52. Solution shown to converge for various ma-

terial wavenumber ratios kl/ks: Hypothetical Material �Hyp� = 5.0, Polyethylene

�C2H4� = 3.6, Gold �Au� = 2.7, Aluminum �Al� = 2.1, Steel �Fe� = 1.8, and

Beryllium �Be� = 1.5.
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Figure 5.9 New normalized far-field scattering amplitude theory
∣∣AL;L

∣∣ 2Φ0
a for an embedded

spherical cavity from Equation 5.31, and for a half-space hemispherical pit from

Equation 5.52. Solution shown to convergence for steel material with a wavenum-

ber ratio kl/ks = 1.8.
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5.2.3 Scattering Amplitude Validation

Any theory that provides scattering amplitude values can, potentially, be tested and vali-

dated by experimental measurements as is described in the follow process compiled and summa-

rized from various chapters in Schmerr’s texts [Schmerr and Song (2007); Schmerr (2016)] with

an extension to the process specific to half-space scattering amplitude [Eason et al. (2017a)].

The hemispherical pit scattering amplitude model is tested and validated with experimental

measurements collected and analyzed by the process described in this section.

5.2.3.1 Measurement System

An ultrasonic measurement system includes: a source voltage Vi (ω), that is transformed

by the sound generation process. It is then altered by the acoustic/elastic interactions in-

cluding wave propagation and scattering, further transformed by the sound reception process,

and finally measured as a received output voltage VR (ω). The system can be modelled in

the frequency domain as shown in Equation 5.55 with the sound generation transfer function

tG (ω), the acoustic/elastic transfer function tA (ω), and the sound reception transfer function

tR (ω) [Schmerr and Song (2007)].

VR (ω) = Vi (ω) tG (ω) tA (ω) tR (ω) (5.55)

One component of interest is the acoustic/elastic transfer function, and fortunately, the

other terms in Equation 5.55 are combined into a single system function s (ω) as shown in

Equation 5.56.

s (ω) = Vi (ω) tG (ω) tR (ω) (5.56)

The received output voltage is then a product, in the frequency domain, of the acous-

tic/elastic transfer function and the system function as shown in Equation 5.57.

VR (ω) = tA (ω) s (ω) (5.57)
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5.2.3.2 Acoustic/Elastic Transfer Function

In the case of an immersion pulse-echo front-wall inspection of a steel specimen in water,

the reference acoustic/elastic transfer function can be described in Equation 5.58 with R12

described in Equation 5.59 and D̃l described in Equation 5.60. The acoustic/elastic transfer

function can be determined from a transducer of radius a, at a distance D from an elastic

material (steel) of density ρ2 and longitudinal wave speed cl2, and water material properties:

density ρ1, wave speed cl1, wavenumber kl1 = ω
cl1

, and frequency dependent attenuation α1 (ω)

or α1 (f). J0 is the zeroth order Bessel function of the first kind, and J1 as the first order Bessel

function of the first kind.

tA (ω) = D̃l

(
kl1a

2

2D

)
R12e

2ikl1De−2α1(f)D (5.58)

R12 =
ρ2cl2 − ρ1cl1
ρ2cl2 + ρ1cl1

(5.59)

D̃l (u) = 2
[
1− eiu (Jo (u)− iJ1 (u))

]
(5.60)

5.2.3.3 System Function

The system function can be determined with an experimental reference measurement from

the measured voltage V ref
R (ω) and reference acoustic/elastic transfer function tA (ω) as shown in

Equation 5.61 based on a division of terms from Equation 5.57. The structure of Equation 5.61

is a Weiner filter necessary to remove the large difference obtained when dividing two small

numbers. The εs is a scalar value to represent a percentage of the maximum signal amplitude

of the divisor term; this can be related to signal noise.

s (ω) =
V ref
R (ω) trefA

∗
(ω)∣∣∣trefA (ω)

∣∣∣2 + εs2 max

{∣∣∣trefA (ω)
∣∣∣2} (5.61)
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The system function s (ω) and system efficiency factor β (ω) are proportional for a pulse-echo

configuration using the same transducer for generation and reception as shown in Equation 5.62.

s (ω) =
1

2
β (ω) (5.62)

5.2.3.4 Reference Spectrum

Once the system function or system efficiency factor have been determined from an initial

calibration experimental reference measurement, then the measurement of the hemispherical

pit on the back-wall can be completed. In this case, the response voltage VR (ω) is related to the

reference spectrum G (ω), scattering amplitude A (ω), and reference flaw length L (spherical

flaw radius) as shown in Equation 5.63.

VR (ω) = G (ω)
A (ω)

L
(5.63)

The reference spectrum is as defined in Equation 5.64 with E (ω) defined in Equation 5.65 for

a pulse-echo configuration with an incident beam such that the quasi-plane wave approximation

is valid as described in Chapter 4. For this case, the flaw is small enough such that beam

variations across the flaw surface can be neglected with V̂
(1)

0 as the incident velocity field and

ZT ;a
r as the transducer radiation impedance in water further described in Equation 5.66.

G (ω) = s (ω)E (ω) (5.64)

E (ω) =
[
V̂

(1)
0 (ω)

]2
[

4πρ2cl2

−ikl2ZT ;a
r

]
(5.65)

ZT ;a
r = ρ1cl1πa (5.66)

In an immersion configuration on an elastic solid specimen, the incident velocity field

V̂
(1)

0 (ω) is described in Equation 5.67 with αl2 (ω) as frequency dependent longitudinal wave

mode attenuation in the elastic solid, z2 as the elastic solid specimen thickness, and Vli
v0

as the



www.manaraa.com

84

ideal velocity field at the flaw location normalized by the normal velocity v0 on the face of the

transducer.

V̂
(1)

0 (ω) = e−α1(ω)De−αl2(ω)z2

(
Vli
v0

)
(5.67)

The ideal velocity field Vli
v0

from Equation 5.67 is the velocity field for a viscosity-free ideal

fluid, neglecting any attenuation material losses. At an acoustic impedance interface, without

tangential components of the velocity field, the normal velocity field v · ns is related to the

normal derivative of the pressure field ∇p · ns as shown in Equation 5.68 [Schmerr and Song

(2007)] with p as the pressure, ns as the unit normal to the interface, ρ0 as the material density,

u as the displacement vector, and v as the velocity vector.

−∇p · ns = ρ0
∂2 (u · ns)

∂t2
= ρ0

∂ (v · ns)
∂t

(5.68)

5.2.3.5 Multi-Gaussian Beam Model

The ideal velocity field through a multi-axis curved acoustic impedance interface can be

determined by using the multi-Gaussian beam model [Schmerr and Song (2007)] as a function

of the following parameters:

� Frequency

� Propagating wave type: in fluid (longitudinal) and in elastic solid (longitudinal or shear)

� Transducer properties: diameter d and geometric focal length

� Geometric properties: distance traveled in fluid D, distance traveled in steel z2, in-

plane vertical perpendicular distance from central ray axis x2, out-of-plane horizontal

perpendicular distance from central ray axis y2, angle of incidence θx θy, and radius of

curvature Rx Ry in both perpendicular planes

� Material properties: densities ρ1 ρ2 and wave speeds cl1 cl2 cs2 in both materials
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5.2.3.6 Scattering Amplitude

The scattering amplitude as obtained from an experimental flaw measurement is shown in

Equation 5.69 with εA as a Weiner filter constant.

A (ω)

L
=

VR (ω)G∗ (ω)

|G (ω)|2 + εA2 max
{
|G (ω)|2

} (5.69)

The measured scattering amplitude from a flaw in the surface of a half-space A (ω)h may be

normalized by a (kla)p factor as shown in 5.70. This is similar to the kla factor normalizing the

theoretical scattering amplitude A previously described in Equation 5.54 where p is typically

a scalar between 0 and 1 [Eason et al. (2017a)].

A (ω)h = A (ω) (kla)p (5.70)

The experimentally determined far-field scattering amplitude A (ω) should be equivalent to

the theoretical normalized scattering amplitude A over the measured frequency range; this is

shown in Equation 5.71 for the case of a hemispherical pit in a half-space. Determining the

comparative relation in Equation 5.71 is the ultimate objective for the experimental validation

of a scattering theory.

A (ω)h ?
= Ah (5.71)

5.3 Measurement and Analysis

Experiments performed in an ultrasonic immersion system provide data for scattering of

longitudinal waves by a hemispherical pit. Data records are analyzed with post processing to

provide data in a form to test model results.

5.3.1 Calibration Test Block

An A106B carbon steel calibration block with 25.4 mm thickness, 101.6 mm length, and

50.8 mm width was prepared with a hemispherical pit with a 2.00 mm diameter machined into,
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what would be the bottom surface in experiments. A schematic of the calibration block is

shown in Figure 5.10.

Figure 5.10 Schematic drawing of calibration test block specimen with hemispherical pit on

the back-wall surface. Figure previously published [Eason et al. (2017a)].

In designing the experiments, the immersion measurement experimental setup was mod-

eled using UTSim2 ultrasonic beam model, ray-tracing, and flaw response simulation soft-

ware [Grandin and Gray (2017)] to ensure that practically all energy is reflected from the

front-wall and back-wall surfaces, and not influenced by the test block edges. The simulation

specimen had dimensions of 75 mm × 75 mm × 25 mm of steel material with a density of

7860 kg/m3, an isotropic longitudinal wave speed of 6186 m/s, an isotropic shear wave speed

of 3330 m/s, and no attenuation. The circular transducer element shape was simulated to be

3.175 mm radius with an infinite focal length with a 8.5 MHz central frequency at 80% band-

width to try and match the characteristics of a PANAMETRICS® V312 Serial #19014 probe.

The transducer was positioned approximately 100 mm from the specimen front-wall surface

and surrounded in water with a density of 997.6 kg/m3, an isotropic longitudinal wave speed of

1490.8 m and power law attenuation of α = 0.00253f2 where α units are neper/cm, and f units

are MHz. The simulation calculated an incident field in the steel specimen at 0.5 mm spacing

resolution in x, y, and z dimensions in a 50 mm × 50 mm × 25 mm area. The beam model was

selected to be Gauss-Hermite with 50 series expansion terms for longitudinal, shear vertical po-

larization, and shear horizontal polarization wave modes, although only the longitudinal wave
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mode is present for this simulation. The spectrum was simulated from 0-20 MHz at a 1 MHz

increment. The results in Figure 5.11 show that the immersion experiment configuration is

such that practically all acoustic energy is reflected from the front-wall and back-wall surfaces

and not influenced by the test block edges.

Figure 5.11 Simulation results from UTSim2 showing flat plate immersion configuration ade-

quate to avoid edge effects.

5.3.2 Experiment Setup

The test block was placed in an immersion tank, set to be level and covered with about

30 cm of water. A picture of the immersion setup is shown in Figure 5.12. An electronics

system block diagram is shown in Figure 5.13. Measurements were made using a 10 MHz,

6.35 mm (0.25 inch) diameter longitudinal wave immersion probe [PANAMETRICS® V312

Serial #190141] which was driven by a pulser-receiver [Peak MicroPulse LT8] at 150V with a

pulse width of 16 ns, at a 1 kHz pulse repetition rate. Data records were recorded at a series of

gain settings: 0, 11, 40, 41, and 70 dB. The received signals were collected a 100 MHz sampling

frequency and measurements were made with settings of a 2.5 MHz high pass filter and an

18 MHz low pass filter. All data records were averaged 256 times to improve the signal to noise

ratio.

After aligning the transducer normal to the front-wall surface, the initial calibration ref-

erence measurement was performed in pulse-echo mode collecting data from the block at a
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location away from the hemispherical pit. This was then followed by a measurement made

with the transducer axis directly above the pit.

The measurements were performed and data collected in a period of one hour. The temper-

ature of the water was measured and monitored at 21.6 ± 0.1 °C resulting in a calculated wave

speed of 1487 ± 1 m/s [Lubbers and Graaff (1998)]. The measured arrival time of the echo from

the front surface, at normal incidence, was 76.9 µs which gave a water path of 114.4 ± 0.1 mm.

The calculated near-field per Equation 3.1 is 34 mm at 5 MHz, 67 mm at 10 MHz, and 102 mm

at 15 MHz. All response signals were adjusted with a screen height to voltage conversion of

0.5% and a mean subtraction to cancel any DC voltage offset.

Figure 5.12 Picture of immersion experiment setup showing transducer and calibration test

block specimen. Figure previously published [Eason et al. (2017a)].

5.3.3 Reference Measurements

Reference measurements were performed and data collected to enable the system function

described in Equation 5.56 to be determined and to ultimately provide the reference spectrum

described in Equation 5.64. The voltage response signal was collected with an 11 dB gain to

achieve maximum amplitude without saturation of the front-wall response, and then again, but
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Figure 5.13 Immersion experiment measurement electronics system block diagram.

with a 40 dB gain, to achieve maximum amplitude without saturation of the first back-wall

response. These voltage response signals are shown in Figure 5.14 for the full signal showing

data record times up to the fourth back-wall reflection (approximately 112 µs) as well as the

segment of the data record for the front-wall and first back-wall on an expanded scale.

5.3.3.1 Longitudinal Wave Speed

The longitudinal wave speed in the steel block was determined using the difference in peak

arrival times between multiple back-wall reflection features for the data record recorded at a

40 dB gain setting. These positive and negative peak features are shown in Figure 5.15 as a���

symbol. The data record for the front-wall features at approximately 77 µs is not usable due to

signal saturation, however, the arrival time difference τl between the second (≈86 µs) and third

(≈94 µs) back-wall longitudinal features were used as a divisor in Equation 5.72 to calculate

a longitudinal wave speed cl for both positive and negative peaks with t = 25.4 mm as the

calibration block thickness. This process is repeated for the subsequent back-wall longitudinal

features resulting in a mean longitudinal wave speed of 5907 ± 12 m/s.

cl =
2t

τl
(5.72)
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5.3.3.2 Shear Wave Speed

The shear wave speed in the steel block was determined using the difference in peak arrival

times from the multiple mode converted back-wall reflection features obtained at a 40 dB gain

setting. The features in the positive and negative peaks are shown in Figures 5.15 and 5.16

as a �×� symbol. The features seen at approximately 89 µs are from a mode converted signal

where the incident mode on the first back-wall is longitudinal and the reflected mode is shear,

or the incident mode on the first back-wall is shear and the reflected mode is longitudinal,

which gives a response where one path is as a longitudinal wave mode and one as a shear

wave mode. The second back-wall mode converted features occur at approximately 98 µs when

three out of the four paths within the steel are traveled as a longitudinal wave mode and

one path is as a shear wave mode. The arrival time difference τs between the first back-wall

mode converted features which occur at approximately 89 µs and front-wall features which

occur at approximately 77 µs are not usable due to front-wall signal saturation. However, the

arrival time difference τs between the second back-wall mode converted features which occur

at approximately 98 µs and first back-wall longitudinal features which occur at approximately

86 µs are used in Equation 5.73 to calculate the shear wave speed as defined in Equation 5.74

with τL as the longitudinal path arrival time and cL as the previously determined longitudinal

wave speed of 5907 m/s. This process is repeated for the subsequent back-wall mode converted

features resulting in a mean shear wave speed of 3253 ± 23 m/s. The longitudinal to shear

wave speed ratio is 1.82 in the steel calibration flat block.

cs =
t

τs − τL
(5.73)

τL = cLt (5.74)
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Figure 5.14 Reference measurement time domain voltage signal responses. To avoid satu-

ration, the front-wall response is observed at 11dB gain and the first back-wall

response is observed at 40 dB gain. Figure previously published [Eason et al.

(2017a)].
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Figure 5.15 Reference measurement time domain voltage signal response with 40 dB gain

showing the longitudinal mode signal features used to calculate the longitudinal

wave speed in the steel block. Figure previously published [Eason et al. (2017a)].

Figure 5.16 Reference measurement time domain voltage signal response with 40 dB gain

showing the mode converted signal features used to calculate the shear wave

speed in the steel block. Figure previously published [Eason et al. (2017a)].
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5.3.3.3 Frequency Domain

The front and back-wall time domain pulse-echo response signals were identified and a gate

applied to give 62 individual voltage data points at a 0.01 µs interval over a 0.62 µs time

period. For each data record the following process was implemented: (i) each gated signal was

subtracted from its mean to remove any DC offset, (ii) a Tukey window function [Harris (1978)]

was applied to each signal in order to smooth the transitions to a zero voltage level. The Tukey

window had 25% as a transition from 0 to 1, 50% equal to 1, and 25% as a transition from

1 to 0, (iii) 9938 zeros were added to pad the record to provide a record length of 100 µs and

retaining the 0.01 µs interval, and (iv) each signal was subtracted from its mean again. The

resulting processed time domain signals for the 40 dB first back-wall, 11 dB front-wall, and

11 dB first back-wall responses are shown in Figures 5.17-5.19.

Once the time domain signal is obtained, a Fast Fourier Transform (FFT) was applied

to convert each signal to the frequency domain. The process was performed by applying the

�ifft� function in MATLAB®, multiplying by the 100 µs signal length, and taking the absolute

value [Schmerr (2016)]. The full frequency domain results contain 10000 points from 0-100 MHz

at a 0.01 MHz interval, however only the values from 0-20 MHz are considered and displayed in

Figures 5.17-5.19. The spectral peaks are identified with��� symbols and are typically between

8-9 MHz.

The -6 dB amplitude bandwidth is defined as the voltage values within 50.1% of the spectral

peak voltage; bandwidth limits are identified with�+� symbols and the ranges are between 5

and 12 MHz. The peak and -6 dB amplitude bandwidth values of the reference measurement

11 dB front-wall, reference measurement 11 dB first back-wall, and pit measurement 40 dB

first back-wall are listed in Table 5.1 as the spectra of interest. Following data review, the

bandwidth range for which the data were used was set to consistently be between 6.10 and

10.30 MHz.
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Table 5.1 Reference and Pit Experiment Amplitude Bandwidth

Response Signal Peak [MHz] Bandwidth [MHz]

Reference 11 dB Front-wall 9.03 6.10–11.38

Reference 11 dB 1st Back-wall 8.27 5.48–10.37

Pit 40 dB 1st Back-wall 8.38 5.36–10.30

Available Bandwidth Range 6.10–10.30

Figure 5.17 Reference measurement gated time and frequency domain first back-wall response

signal with 40 dB gain. Figure previously published [Eason et al. (2017a)].
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Figure 5.18 Reference measurement gated time and frequency domain front-wall response

signal with 11 dB gain. Figure previously published [Eason et al. (2017a)].
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Figure 5.19 Reference measurement gated time and frequency domain first back-wall response

signal with 11 dB gain. Figure previously published [Eason et al. (2017a)].
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5.3.3.4 Acoustic/Elastic Transfer Function

The acoustic/elastic transfer function as described in Equation 5.58 is calculated for the

experimental immersion measurements. The absolute value of the acoustic elastic transfer

function is shown in Figure 5.20 using the following values: ρ1 = 998 kg/m3, ρ2 = 7860 kg/m3,

cl1 = 1487 ± 1 m/s, cl2 = 5907 ± 12 m/s, R12 = 0.94, a = .003 m, ω evaluated over a

range of 0-3.18 × 106 angular frequency [rad/s] equivalent to f over a range of 0-20 MHz,

D = 114.4 ± 0.1 mm, and α1 (f) = 25.3×10−3f2 Nepers/m. The uncertainty of the longitudinal

wave speed in water cl1 (± 1 or 0.07%) is smaller than the uncertainty of the longitudinal wave

speed in the steel block cl2 (± 12 or 0.2%). The water uncertainty is based on the reported error

in the equation used to calculate the wave speed as a function of ambient temperature [Lubbers

and Graaff (1998)]; the steel uncertainty is based on the limited experimental wave speed

measurements.

Figure 5.20 Acoustic/elastic transfer function tA from Equation 5.58. Figure previously pub-

lished [Eason et al. (2017a)].

5.3.3.5 System Function

The system function described in Equation 5.61 is shown in Figure 5.21 when using the

11dB front-wall response signal with a Weiner constant filter value of εs = 0.5.
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Figure 5.21 System function s from Equation 5.61. Figure previously published [Eason et al.

(2017a)].

5.3.3.6 Attenuation in Steel Sample

The attenuation due to grain scattering within the sample can be calculated as described

in Equation 5.75 where α is in units of dB per unit length of sample thickness t with F (ω)

as the front-wall spectrum, B (ω) as the first back-wall spectrum, and εα as a Weiner filter

constant [Schmerr (2016)].

α = − 1

2t
ln

[
|B (ω)| |F (ω)|
|F (ω)|2 + εα2

]
× 8.686 (5.75)

The spectra for the front-wall and first back-wall response from the data records obtained

with 11dB gain are shown in Figures 5.18 and 5.19 and are applied to Equation 5.75 for

εα = 0.004 as shown in Figure 5.22. A least squares linear fit is applied to the data within the

bandwidth range from 6.10 to 10.30 MHz also shown in Figure 5.22. This frequency domain

data is at a 0.01 MHz interval as result of the FFT process. The R2 = 0.93 value indicates

an increasing linear relation between frequency and attenuation coefficient, however, the linear

approximation is not used in lieu of the actual measured attenuation coefficient values. These

measured attenuation coefficient values are in agreement with previously reported results in

the range of 0.5-1.0 dB/mm at 10 MHz [Smith et al. (1981)].
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Figure 5.22 Attenuation α from Equation 5.75. Figure previously published [Eason et al.

(2017a)].
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5.3.3.7 Multi-Gaussian Beam Model

The ideal velocity ratio field term from Equation 5.67 can be determined from the Multi-

Gaussian beam model [Schmerr and Song (2007)]. The transducer was positioned at a normal

angle of incidence. The longitudinal wave mode for material 1 (water) and the longitudinal

wave mode for material 2 (steel) were used with the previously mentioned density and wave

speed material property values. The transducer diameter was d = 6.35 mm and assumed to be

plane-wave infinite focal length. The distance traveled in the water was D = 114.4 mm and in

the steel it was z2 = t = 25.4 mm. The model was set with an infinite geometric curvature,

indicating a flat surface. Ideal velocity ratio field values were calculated over a range of -50 mm

to +50 mm in the vertical (Y direction) and horizontal (X direction) perpendicular distances

from the central ray axis.

The ideal velocity ratio was evaluated at the location of the flaw at z2 = t for only the first

ten Wen and Breazeale Coefficients over a frequency range from 0-20 MHz for a range of spatial

resolution values of 10 mm (121 points), 5 mm (441 points), 2 mm (2601 points), 1 mm (10201

points), and 0.5 mm (40401 points). Different methods were considered to determine the ideal

velocity ratio values from 0-20 MHz. The first method was simply the ideal velocity field value

at the central ray location (which is also the maximum ideal velocity at each frequency) with

data shown in Figure 5.23 as a solid line. The second method was the average ideal velocity

ratio above the -6 dB amplitude bandwidth of the maximum ideal velocity at each frequency

with data shown as a dashed line in Figure 5.23. The third method was a numerically evaluated

trapezoid integral to determine the average ideal velocity ratio above a noise floor of 10% of the

maximum ideal velocity at at each frequency with data shown as a dash-dot line in Figure 5.23.

The fourth method was the average ideal velocity ratio above a noise floor of 10% of the

maximum ideal velocity at each frequency with data shown as a dotted line in Figure 5.23.

Also spatial domain plots of the velocity ratio field for the case of 1 mm resolution are shown

in Figure 5.24 at the lower bandwidth frequency limit of 6.10 MHz, in Figure 5.25 at the peak

frequency of the reference measurement 11 dB first back-wall response signal of 8.27 MHz, and

in Figure 5.26 at the upper bandwidth frequency limit of 10.30 MHz.
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Figure 5.23 Ideal velocity ratio calculation methods from the Multi-Gaussian beam model at

the flaw location. Figure previously published [Eason et al. (2017a)].

Figure 5.24 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

lower bandwidth frequency limit of 6.10 MHz with 1 mm spatial resolution. Figure

previously published [Eason et al. (2017a)].
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Figure 5.25 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

reference measurement 11 dB first back-wall response signal peak frequency of

8.27 MHz with 1 mm spatial resolution. Figure previously published [Eason et al.

(2017a)].

Figure 5.26 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

upper bandwidth frequency limit of 10.30 MHz with 1 mm spatial resolution.

Figure previously published [Eason et al. (2017a)].
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A common assumption is that the ideal velocity ratio does not vary significantly over the

response surface of the flaw and to use the central axis (maximum) ideal velocity ratio. However,

the new hemispherical pit scattering theory includes scattering from the half-space boundary

as well as from the hemispherical pit surface, and the common assumption for a constant ideal

velocity ratio over this larger region may not be rigorously valid, but appears to be an adequate

approximation. The maximum ideal velocity ratio may be too large, and a -6 dB average, >10%

integral average, or other ideal velocity ratio values may be a better approximation. Although

not completely rigorously correct, for consistency, the maximum ideal velocity ratio is used.

5.3.3.8 Reference Spectrum

The incident velocity V̂
(1)

0 (ω) at the flaw location is required to determine the reference

spectrum G (ω) at the flaw location described in Equations 5.64-5.66. The velocity field is

related to the normal derivative of the pressure field as defined in Equation 5.68. The incident

velocity (at the flaw location) is a product of three parameters: attenuation in water, attenua-

tion in steel, and the ideal velocity ratio at the flaw location as described in Equation 5.67. The

values of each of the three parameters are shown for comparison in Figure 5.27 with the result-

ing incident velocity at the flaw location shown in Figure 5.28. The corresponding reference

spectrum at the flaw location from Equation 5.64 is shown in Figure 5.29.

5.3.4 Pit Measurements

Data records for measurements were made directly above and normal to the hemispherical

pit. The pulse-echo voltage response signals were recorded with a 40 dB gain setting to achieve

maximum amplitude without saturation of the first back-wall response, and at a 70 dB gain to

achieve maximum amplitude without saturation for the pit response. The signals are shown in

Figure 5.30, together with the corresponding reference measurement response signals at 40 dB

and 70 dB gain settings with expanded scales for segments of the data record showing just the

pit and first back-wall response. The signal from the waves scattered from the pit is observable

by a decrease in amplitude in the first back-wall reflection at approximately 85.7 µs, and with

an early arrival just before the first back-wall signal at 85.3 µs.
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Figure 5.27 Parameters that influence the incident velocity V̂
(1)

0 (ω) at the flaw location are

shown as water attenuation e−α1(ω)D, steel attenuation e−αl2(ω)z2 , and ideal ve-

locity Vli
v0

at the flaw location. Figure previously published [Eason et al. (2017a)].

Figure 5.28 Incident velocity V̂
(1)

0 (ω) at flaw location from Equation 5.67. Figure previously

published [Eason et al. (2017a)].
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Figure 5.29 Reference spectrum G (ω) at flaw location from Equation 5.64. Figure previously

published [Eason et al. (2017a)].

5.3.4.1 Frequency Domain

The time and frequency domain signals for the first back-wall pulse-echo signal are shown

in Figure 5.31. This time domain signal includes scattering from the pit and the back-wall.

The same signal processing methods are applied to achieve the frequency data in Figure 5.31.

5.4 Results

Applying Equations 5.69 and 5.70 results in the half-space far-field scattering amplitude

A (ω)h. The reference spectrumG (ω) was determined from the data obtained from the reference

front-wall and reference first back-wall signal with a gain setting of 11 dB. The pit measurement

response VR (ω) was determined from the spectrum for the pit first back-wall response at a

gain setting of 40 dB. None of the signals used to generate the reference spectrum or the pit

measurement voltage response were saturated. The measurement system exhibits linearity in

its performance at these different gain levels over the frequency range of interest. The system

linearity enables scaling and shifting factors to be applied to the scattering amplitude A (ω)h

via the normalizing variable L in Equation 5.69.
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Figure 5.30 Reference and pit measurement time domain voltage signal responses. The top

response is at 40 dB gain to avoid saturation of the first back-wall, the bottom

response is at 70 dB gain to avoid saturation of the pit. Figure previously pub-

lished [Eason et al. (2017a)].
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Figure 5.31 Pit measurement experiment gated time and frequency domain first back-wall re-

sponse signal with 40 dB gain. Figure previously published [Eason et al. (2017a)].
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The measured half-space far-field scattering amplitude A (ω)h is shown in Figure 5.32 with

εA = 0.06, p = 0, a scale factor of -0.42, and a shift factor of 1.08. The measured scattering

amplitude is compared with the theoretical scattering amplitude for the longitudinal to shear

wave speed ratio of 1.82 measured in the experiment. The estimated error bands are shown

as measurement sensitivity limits based on an uncertainty range for a ±10% variation in the

measured longitudinal wave speed, scaling factor p, and Weiner filter constants εs, εα, and

εA. The measured scattering amplitude in Figure 5.32 shows good agreement in the ka range

between 6.5 and 8. There remain differences between theory and experiment at higher ka

values.

A modified filtering and scaling approach using modified constants is shown in Figure 5.33

with εs = 0.8, εα = 0.5, εA = 0.09, p = 0.7, a scale factor of -0.03, and a shift factor of

1.05. Again, the measured scattering amplitude is compared with the theoretical scattering

amplitude for the longitudinal to shear wave speed ratio of 1.82 measured in the experiment.

The theoretical and experimental data are in good agreement between 6.5 and 9 ka. Again,

the estimated error bands are shown as measurement sensitivity limits based on an uncertainty

range for a ±10% variation in the measured longitudinal wave speed, scaling factor p, and

Weiner filter constants εs, εα, and εA.

The experimental results from 9 < ka < 11 do not match the hemispherical pit scattering

theory as observable in 5.33. The higher frequency components of the signal, while within

the usable bandwidth, may not have been captured sufficiently if the sampling frequency was

too low. The Nyquist sampling criterion requires at least 2 times the sampling frequency of

the highest frequency component of interest; however this criterion is a lower limit, and often

in practice, a sampling frequency of 10 times is conservatively applied [Schmerr (2016)]. A

Nyquist criterion limit of 11.3 times is shown in Figure 5.34 corresponding to ka = 9.4 and

a frequency of 8.9 MHz for a 100 MHz sampling frequency. Also shown in Figure 5.34 are

the relatively low-frequency (long-wavelength) fourth power Rayleigh scattering theory and

the relatively high-frequency (short-wavelength) ray tracing Geometrical Theory of Diffraction

(GTD).
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Figure 5.32 Far-field scattering amplitude for a hemispherical pit theory Ah compared to the

measurement A (ω)h. Figure previously published [Eason et al. (2017a)].
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Figure 5.33 Far-field scattering amplitude for a hemispherical pit theory Ah compared to the

measurement A (ω)h with different filtering and scaling factors. Figure previously

published [Eason et al. (2017a)].
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Figure 5.34 The far-field scattering amplitude for a hemispherical pit theory Ah, the Rayleigh

scattering theory, and the Geometrical Theory of Diffraction (GTD) are compared

to the measurement A (ω)h with different filtering and scaling factors along with

a conservative Nyquist criterion limit of 11.3 times at ka = 9.4 (8.9 MHz).
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Another possible explanation for the discrepancy between the scattering amplitude model

and the experimental measurement at higher ka values may be potential inconsistency regarding

the use of the water path distance as compared to the physical distance between the transducer

and flat plate front surface. In the experimental measurements, the water path distance of

114.4 mm is twice the physical distance of 57.2 mm in a pulse-echo configuration. The physical

distance or water path distance is applied at various steps in the scattering amplitude validation

process for i) the initial calibration block design simulation, ii) generating of the acoustic/elastic

transfer function, iii) defining the Multi-Gaussian beam model, iv) determining the reference

spectrum, v) collecting the reference measurement, and vi) collecting the pit measurement; this

distance may have been defined or applied inconsistently at one or more steps in the process.

Preliminary work to try and resolve this possibly inconsistency shows potential for improved

agreement between the model and measurement at the larger ka values. This may be explained

in part due the frequency dependent location of the near-field. The calculated near-field per

Equation 3.1 is 34 mm at 5 MHz, 67 mm at 10 MHz, and 102 mm at 15 MHz. It may be possible

that all the steps in the process are outside of the near-field at lower ka values regardless of

the use of water path distance or physical distance, however, some steps in the process may fall

within the near-field at higher ka values depending on whether the use of water path distance

or physical distance is applied.

5.5 Summary

A new theory for the scattering response for a hemispherical pit in a half-space, originally

developed in the seismology community, was extended to give the far-field scattering amplitude

model for the scattering response of a hemispherical pit in the far wall of a plate. The initial

model and experimental data are found to be in good agreement in the ka range from 6.5 to 9.

Consideration of the Nyquist sampling criterion may explain why the model and experiment do

not match at higher frequency still within the usable bandwidth in the ka range from 9 to 11.

If fully validated, the solution to this canonical problem of a half-space with a hemispherical

pit could potentially become a new standard geometric reference feature for use in ultrasonic

NDE that is more representative of pitting type corrosion.
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CHAPTER 6. ELASTIC WAVE SCATTERING - CURVE SURFACE -

SINGLE FLAW

The approach developed and reported in Chapter 5 to describe scattering by a hemispherical

pit on a flat surface is extended to scattering by a hemispherical pit on a curved surface

by applying similar experimentation and analysis methods. Scattering amplitude results are

presented for a hemispherical pit on a curved surface from an immersion experiment. The work

is extended even further for contact measurement simulation and experiments as described in

Chapter 6.

6.1 Measurement and Analysis

This section describes data generated from an immersion transducer experiment in an at-

tempt to validate the hemispherical pit scattering theory on a curved pipe surface.

6.1.1 Experimental Setup

An immersion experiment was conducted on an A106B carbon steel 4-inch nominal cali-

bration pipe specimen of 9.0 ± 0.5 mm thickness and 114.3 ± 1.3 mm outside diameter with a

machined hemispherical pit of 2.00 ± 0.005 mm diameter. A picture of the immersion setup is

shown in Figure 6.1. A 10 MHz, 0.25 inch diameter immersion probe [PANAMETRICS® V312

S/N 190141] was driven at 150V with a pulse width of 10 ns, at a 1000 Hz pulse repetition rate,

with applied gain values of 0 dB, 3 dB, 7 dB, 25 dB, 28dB, and 47dB. The received signals

were collected at a 250 MHz sampling frequency with a 1 MHz high pass filter and 20 MHz

low pass filter and averaging 128 signals. After normalizing alignment to the pipe surface, an

initial system calibration reference experiment was collected at a vertical distance away from
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the hemispherical pit, followed by a measurement directly above the pit. The measurements

were collected over a 1 hour period where the temperature of the water was monitored to be

22.9°C resulting in a calculated wave speed of 1490.8 m/s [Lubbers and Graaff (1998)]. The

measured arrival time of the front surface was 77.0 µs resulting in a water path distance of

114.8 mm. The calculated near-field per Equation 3.1 is 34 mm at 5 MHz, 67 mm at 10 MHz,

and 102 mm at 15 MHz.

Figure 6.1 Picture of immersion experiment setup showing transducer and calibration test

pipe specimen.

6.1.2 Reference Measurements

A reference experiment was completed to establish the system function as described in

Equation 5.56. The response signal was collected with a 3 dB gain to achieve maximum

amplitude without saturation of the front-wall reflection, and again with a 25 dB gain to

achieve maximum amplitude without saturation of the first back-wall reflection. These voltage

response signals are shown in Figure 6.2 for the full signal showing up to seven back-wall

reflections as well as a region showing just the front-wall and first back-wall.
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Figure 6.2 Reference measurement time domain voltage signal responses. To avoid saturation,

the front-wall response is observed at 3 dB gain and the first back-wall response is

observed at 25 dB gain.
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6.1.2.1 Longitudinal Wave Speed

The longitudinal wave speed in the steel was calculated from the difference in peak arrival

time from multiple back-wall reflection features from the 25 dB signal. These positive and

negative peak features are shown as red and blue �o� in Figure 6.3. The front-wall features

around 77 µs are not usable due to signal saturation, however, the arrival time difference τl

between the second (≈80 µs) and third (≈83 µs) back-wall longitudinal features are a divisor

in Equation 5.72 to calculate the second back-wall reflection number longitudinal wave speed

cl for both positive and negative peaks per Equation 5.72 with t = 9.0 mm as the pipe wall

thickness. This process is repeated for the subsequent back-wall longitudinal features with

resulting longitudinal wave speeds shown in Figure 6.4. The seventh back-wall longitudinal

features are ignored as slightly outlying data points, the remaining values are averaged resulting

in a calculated longitudinal wave speed of 6186 m/s.

Figure 6.3 Reference measurement time domain voltage signal response with 25 dB gain show-

ing the longitudinal mode signal features used to calculate the longitudinal wave

speed in the steel pipe.
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Figure 6.4 Calculated individual wave speed values from each back-wall reflection used to

determine the longitudinal wave speed in the steel pipe.

6.1.2.2 Shear Wave Speed

The shear wave speed in the steel was calculated from the arrival time of multiple mode

converted back-wall refection features from the 25 dB signal. These positive and negative peak

features are shown as red and blue �×� in Figure 6.5. The features around 81 µs are from a mode

converted signal where the incident mode on the first back-wall is longitudinal and the reflected

mode is shear, or the incident mode on the first back-wall is shear and the reflected mode is

longitudinal, summarized as having one path longitudinal and one path shear. The second back-

wall mode converted features around 84 µs are when three out of the four paths within the steel

are of longitudinal mode and one path is of shear mode. The arrival time difference τs between

the first back-wall mode converted features (≈81 µs) and front-wall features (≈77 µs) are not

usable due to front-wall signal saturation, however, the arrival time difference τs of the second

back-wall mode converted features (≈84 µs) and first back-wall longitudinal features (≈80 µs)

are used in Equation 5.73 to calculate shear wave speed with τL as the longitudinal path arrival

time defined in Equation 5.74 with cL as the previously determined longitudinal wave speed of

6186 m/s. This process is repeated for the subsequent back-wall mode converted features with

resulting shear wave speeds shown in Figure 6.6. The fifth back-wall mode converted features
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are ignored as slightly outlying data points, the remaining values are averaged resulting in a

calculated shear wave speed of 3330 ± 24 m/s. The longitudinal to shear wave speed ratio is

1.86 for the steel calibration pipe; this value is slightly greater than the flat plate material in

Chapter 5 with a longitudinal to shear wave speed ratio of 1.82.

Figure 6.5 Reference measurement time domain voltage signal response with 25 dB gain show-

ing the mode converted signal features used to calculate the shear wave speed in

the steel pipe.

6.1.2.3 Frequency Domain

The front-wall and all back-wall reflection signals were gated to have 152 voltage measure-

ments at a 0.004 µs interval over a 0.608 µs time period. First, each signal was subtracted from

its mean to remove any DC offset. Next, a Tukey window function [Harris (1978)] was applied

to each signal in order to smooth the transitions to a zero voltage level. The Tukey window

had 25% as a transition from 0 to 1, 50% equal to 1, and 25% as a transition from 1 to 0.

Next, 24848 zeros were padded to the end of each signal to bring the total signal length to

100 µs while retaining the 0.004 µs interval. Finally, each signal was subtracted from its mean

again. The resulting processed time domain signals for the front-wall and back-wall reflections

are shown in Figures 6.7 and 6.8 for 25 dB and 3 dB signals. The 25 dB front-wall signal is

not shown due to saturation.
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Figure 6.6 Calculated individual wave speed values from each back-wall reflection used to

determine the shear wave speed in the steel pipe.

A FFT function was applied to convert each time domain signals to frequency domain

spectral magnitude by applying the �ifft� function in MATLAB®, multiplying by the 100 µs

signal length, and taking the absolute value [Schmerr (2016)]. The full frequency domain results

contain 250000 points from 0-250 MHz at a 0.01 MHz interval, however only the values from

0-20 MHz are considered and plotted in Figures 6.7 and 6.8 for the 25 dB and 3 dB signals. The

25 dB front-wall signal is not shown due to saturation. The plots identify the spectral peaks

as �o� and are typically between 9-10 MHz. The -6 dB amplitude bandwidth is defined as

the voltage values within 50.1% of the spectral peak voltage; the plots identify the bandwidth

limits as �+� and the ranges are typically between 5-11 MHz.

Only the reference experiment 3 dB front-wall, 3 dB first back-wall, and 25 dB first back-

wall frequency domain signals are used to determine the system function. The -6 dB amplitude

bandwidth values for these signals are listed in Table 6.1 for the reference experiment as well

as the 25 dB first back-wall signal from the pit experimental measurement. The conservative

bandwidth range is consistently used on all frequency domain plots from the curved pipe sample.
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Table 6.1 Reference and Pit Experiment Amplitude Bandwidth

Experiment Signal Lower Limit Maximum Upper Limit

Reference 3 dB Front-wall 3.42 MHz 8.51 MHz 11.03 MHz

Reference 3 dB 1st Back-wall 4.50 MHz 9.06 MHz 11.53 MHz

Reference 25 dB 1st Back-wall 4.64 MHz 9.10 MHz 11.55 MHz

Pit 25 dB 1st Back-wall 4.47 MHz 9.22 MHz 11.02 MHz

Conservative Range 4.64 MHz 11.02 MHz

Figure 6.7 Reference measurement gated time and frequency domain for multiple back-wall

response signals with 25 dB gain. The front-wall response signal is not shown due

to signal saturation.
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Figure 6.8 Reference measurement gated time and frequency domain for front-wall and mul-

tiple back-wall response signals with 3 dB gain.
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6.1.2.4 Acoustic/Elastic Transfer Function

The reference acoustic/elastic transfer function as described in Equation 5.58 is calculated

for the immersion transducer experiment. The absolute value of the acoustic elastic transfer

function is shown in Figure 6.9 using the following values: ρ1 = 997.6 kg/m3, ρ2 = 7860 kg/m3,

c11 = 1490.8 m/s, cl2 = 6185.5 m/s, R12 = .94, a = 0.003 m, ω evaluated over the same

range from 0-3.18 × 106 angular frequency [rad/s] equivalent to f over a range of 0-20 MHz,

D = 0.1448 m, and α1 (f) = 25.3× 10−3f2 Nepers/m. The calibration pipe specimen density

ρ1 was not measured, but provided from a standard reference table; coincidentally, this value

is very similar to the flat block specimen measured material density of 999 kg/m3 as described

in Chapter 5.

Figure 6.9 Acoustic/elastic transfer function tA from Equation 5.58.

6.1.2.5 System Function

The system function described in Equation 5.61 is shown in Figure 6.10 using the 25 dB

first back-wall reflected signal for various Weiner filter constant values. The system function

with a Weiner filter constant value of εs = 0.10 was used.
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Figure 6.10 System function s from Equation 5.61. Specific immersion setup system function

for Weiner filter noise level constant values of εs = 0.0, εs = 0.05, and εs = 0.10.

6.1.2.6 Attenuation in Steel Sample

The front-wall and first back-wall frequency domain values from the 3dB signal shown

in Figure 6.8 are applied to Equation 5.75 for three εα values as shown in Figure 6.11. A

linear fit is applied to the curves within the bandwidth range from 4.64 to 11.02 MHz. The

εα = 0.02 Weiner filter constant provides the best least squares regression linear fit; the resulting

longitudinal attenuation coefficient for this particular steel is the empirical Equation 6.1 for

the tested bandwidth range in dB/mm.

α2 = −0.0443f + 1.5283 (6.1)

While the attenuation coefficient values should be increasing with frequency, the measured

results are relatively flat to slightly decreasing. This may be due to unaccounted curvature

effects exacerbated by the relatively large ratio of curvature to sample thickness. However, while

the trend is incorrect, the values are close to previously reported attenuation coefficients [Smith

et al. (1981)]. The actual attenuation values for εα = 0.02 will be used as opposed to the linear

approximation.
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Figure 6.11 Attenuation α from Equation 5.75 for Weiner fileter noise level constant values

of εα = 0.0, εα = 0.02, and εα = 0.04.
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6.1.2.7 Multi-Gaussian Beam Model

The ideal velocity ratio field term from Equation 5.67 was determined from the Multi-

Gaussian beam model. The longitudinal wave mode for material 1 (water) and the longitudinal

wave mode for material 2 (steel) was used with the previously mentioned density and wave speed

material property values. The transducer diameter was d = 6 mm with an infinite focal length.

The distance traveled in the water was D = 114.8 mm and in the steel was z2 = t = 9 mm.

The geometric curvature was a radius of 51.75 mm along the vertical perpendicular direction.

Velocity ratio measurements were calculated over a range of -50 mm to +50 mm in the vertical

(Y direction) and horizontal (X direction) perpendicular distances from the central ray axis.

The transducer was positioned at a normal angle of incidence.

The ideal velocity ratio was evaluated at the flaw location at z2 = t for only the first ten

Wen and Breazeale Coefficients over a frequency range from 0-20 MHz as shown in Figures 6.12,

6.16, 6.20, 6.24, and 6.28 for a corresponding range of spatial resolution values of 10 mm (121

points), 5 mm (441 points), 2 mm (2601 points), 1 mm (10201 points), and 0.5 mm (40401

points). The solid black lines indicate the velocity ratio for each individual spatial location.

The black dotted line indicates the velocity ratio at the central ray location (which is also

the maximum velocity ratio at each frequency). The green dotted line indicates the average

velocity ratio for values above the -6 dB amplitude bandwidth of the maximum velocity ratio

at each frequency. The blue dotted line indicates the average velocity ratio for values above

a noise floor of 10% of the maximum velocity ratio at each frequency. The red dotted line

indicates a numerically evaluated trapezoid integral method to determine the average velocity

ratio for values above a noise floor of 10%. Spatial domain velocity ratio field plat at the flaw

location for the conservative lower bandwidth limit (4.64 MHz), the peak frequency value of

the 25 dB system first back-wall response (9.10 MHz), and the conservative upper bandwidth

limit (11.02 MHz) are shown in Figures 6.13-6.15, 6.17-6.19, 6.21-6.23, 6.25-6.27, and 6.29-6.31.

A common assumption is such that the velocity ratio does not vary much over the response

surface of the flaw and that the central axis (maximum) velocity ratio is used. However,

the new hemispherical pit scattering theory incorporates scattering from the stress-free half-
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space boundary surface in addition to scattering from the pit surface. In this application,

the maximum velocity ratio may be too large, and a -6dB average, >10% integral average, or

other velocity ratio values may be a better approximation. Regardless, for consistency, the

maximum velocity ratio is used in this study, but additional work may be necessary to explore

other options.

Figure 6.12 Ideal velocity ratio calculation methods from the Multi-Gaussian beam model at

the flaw location with 10 mm spatial resolution.

Figure 6.13 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

lower bandwidth frequency limit of 4.64 MHz with 10 mm spatial resolution.
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Figure 6.14 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

reference measurement 25 dB first back-wall response signal peak frequency of

9.10 MHz with 10 mm spatial resolution.

Figure 6.15 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

upper bandwidth frequency limit of 11.02 MHz with 10 mm spatial resolution.

Figure 6.16 Ideal velocity ratio calculation methods from the Multi-Gaussian beam model at

the flaw location with 5 mm spatial resolution.
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Figure 6.17 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

lower bandwidth frequency limit of 4.64 MHz with 5 mm spatial resolution.

Figure 6.18 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

reference measurement 25 dB first back-wall response signal peak frequency of

9.10 MHz with 5 mm spatial resolution.

Figure 6.19 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

upper bandwidth frequency limit of 11.02 MHz with 5 mm spatial resolution.
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Figure 6.20 Ideal velocity ratio calculation methods from the Multi-Gaussian beam model at

the flaw location with 2 mm spatial resolution.

Figure 6.21 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

lower bandwidth frequency limit of 4.64 MHz with 2 mm spatial resolution.

Figure 6.22 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

reference measurement 25 dB first back-wall response signal peak frequency of

9.10 MHz with 2 mm spatial resolution.
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Figure 6.23 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

upper bandwidth frequency limit of 11.02 MHz with 2 mm spatial resolution.

Figure 6.24 Ideal velocity ratio calculation methods from the Multi-Gaussian beam model at

the flaw location with 1 mm spatial resolution.

Figure 6.25 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

lower bandwidth frequency limit of 4.64 MHz with 1 mm spatial resolution. Figure

previously published [Eason et al. (2017b)].
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Figure 6.26 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

reference measurement 25 dB first back-wall response signal peak frequency of

9.10 MHz with 1 mm spatial resolution.

Figure 6.27 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

upper bandwidth frequency limit of 11.02 MHz with 1 mm spatial resolution.

Figure previously published [Eason et al. (2017b)].

Figure 6.28 Ideal velocity ratio calculation methods from the Multi-Gaussian beam model at

the flaw location with 0.5 mm spatial resolution.
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Figure 6.29 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

lower bandwidth frequency limit of 4.64 MHz with 0.5 mm spatial resolution.

Figure 6.30 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

reference measurement 25 dB first back-wall response signal peak frequency of

9.10 MHz with 0.5 mm spatial resolution.

Figure 6.31 Multi-Gaussian beam model ideal velocity ratio field at the flaw location at the

upper bandwidth frequency limit of 11.02 MHz with 0.5 mm spatial resolution.
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6.1.2.8 Reference Spectrum

The incident velocity V̂
(1)

0 (ω) at the flaw location is required to determine the reference

spectrum G (ω) at the flaw location described in Equations 5.64-5.66. The velocity field is

related to the normal derivative of the pressure field as defined in Equation 5.68. The incident

velocity (at the flaw location) is a product of three parameters: attenuation in water, attenu-

ation in steel, and the ideal velocity ratio at the flaw location as described in Equation 5.67.

The values of each of the three parameters are shown for comparison in Figure 6.32 with the

resulting incident velocity at the flaw location shown in Figure 6.33. The corresponding E (ω)

and reference spectrum G (ω)at the flaw location from Equations 5.65 and 5.64 are shown in

Figures 6.34 and 6.35 correspondingly. The water attenuation term used in Equation 5.67 is

defined as α1 (f) = 25.3× 10−3f2 Nepers/m [Schmerr (2016)]; the steel attenuation term from

Equation 5.67 is determined experimentally as described in Equation 5.75 [Schmerr (2016)].

The 22.9°C water temperature is not a factor in the water attenuation calculation. Similarly,

the 22.9°C steel temperature is not a factor in the experimental determined steel attenuation,

but this attenuation value may not be applicable at other temperatures.

Figure 6.32 Parameters that influence the incident velocity V̂
(1)

0 (ω) at the flaw location are

shown as water attenuation e−α1(ω)D, steel attenuation e−αl2(ω)z2 , and ideal ve-

locity Vli
v0

at the flaw location.
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Figure 6.33 Incident velocity V̂
(1)

0 (ω) at flaw location from Equation 5.67.

Figure 6.34 E (ω) at flaw location from Equation 5.65.
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Figure 6.35 Reference spectrum G (ω) at flaw location from Equation 5.64.

6.1.3 Pit Measurements

After the reference spectrum has been established at the location of the flaw from the

reference experiment, the next step is to analyze the data collected from the pit measurement

experiment. The data is presented in the time domain comparing the reference measurement

response at 25 dB gain and the pit measurement response at 25 dB gain as shown in Figure 6.36.

The pit measurement was shifted by 44 ns for better alignment. The signal scattered from the

pit is observable as a decrease in amplitude in first back-wall reflection at 80.25 µs as well as

the appearance of a smaller response just before the first back-wall at 79.75 µs.

6.1.3.1 Frequency Domain

The time and frequency domain of the first back-wall response is shown in Figure 6.37.

This time domain window includes scattering from the pit as well as the back-wall as consistent

with the hemispherical pit scattering theory. The same signal processing methods are applied

to achieve the frequency domain plot with similar -6 dB from peak usable bandwidth range.
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Figure 6.36 Reference and pit measurement time domain voltage signal responses at 25 dB

gain. Figure previously published [Eason et al. (2017b)].

6.2 Results

The curved surface scattering amplitude results and a curvature effects comparison of the

attenuation and scattering amplitude measurements are discussed.

6.2.1 Scattering Amplitude

Applying Equations 5.69 and 5.70 result in the far-field scattering amplitude A (ω)h for

L = 0.1 cm (1 mm) pit radius flaw size as shown in Figure 6.38 for various ε values. The value of

εA = 0.04 was used as a reasonable noise filter level. The far-field scattering amplitude results

are compared with theory as shown in Figure 6.39 for the longitudinal to shear wave speed

ratio of 1.86 measured in the experiment. While the measured hemispherical pit curved surface

scattering amplitude is not an exact match to the theory, the periodicity of the hemispherical

pit curved surface measurement is similar to that of the hemispherical pit theory, as compared

to the embedded spherical cavity theory. A frequency domain shift of ka = 1 of the measured

results brings a much closer alignment with theory as shown in Figure 6.40, but still with some

discrepancy in the upper 9 ≤ ka ≤ 11 range. This discrepancy could be a result of measurement

error, incorrect theory, or incorrect methods to transfer the received voltage to a scattering
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Figure 6.37 Pit measurement experiment gated time and frequency domain first back-wall re-

sponse signal with 25 dB gain. Figure previously published [Eason et al. (2017b)].

amplitude. This last discrepancy source is possibly most significant as surface curvature was

not accounted for in the acoustic/elastic transfer function, and the ratio of specimen radius to

beam cross-sectional area may not be insignificant; curvature effects are discussed in the next

section. Other less significant possible sources of discrepancy are described in Chapter 10.
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Figure 6.38 Far-field scattering amplitude measurement value A (ω)h from Equations 5.69 and

5.70.

6.2.2 Curvature Effects

While the angle of the incident acoustic beam impinging onto the curved pipe surface is

normal exactly below the transducer, the transducer aperture and beam spreading will result

in non-normal incident angles at locations away from beam centerline. Consider the Gauss-

Hermite beam simulation shown in Figure 5.11 with a 6.35 mm transducer at a distance of

114.8 mm away from the surface. The resulting region containing significant acoustic energy

will be of about 25 mm in diameter. Considering the outer edge of this region, and provided that

the pipe diameter is 114.3 mm, the outer edge of the beam will impinge the surface at an angle

of cos−1
(

12.5
57.15

)
= 12.6° as shown in Figure 6.41. Snell’s law as shown in Equation 6.2 can be

used to calculate the transmission angle with c1 as the water wave speed at 1490.8 m/s, c2 as the

steel longitudinal mode wave speed at 6186 ± 13 m/s, θ1 as the incident angle from normal, and

θ2 as the transmission angle from normal of 58.9° as shown in Figure 6.41. The corresponding

angle of deflection from vertical is 46.3° as shown in Figure 6.41. This transmission angle will

vary depending on the pipe curvature, transducer diameter and frequency, and material wave

speeds.
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Figure 6.39 Far-field scattering amplitude for a hemispherical pit theory Ah is compared to

the measurement value A (ω)h.

The presence of curvature at the fluid to elastic material interface may have a significant

effect on the attenuation and scattering amplitude measurement results.

sin (θ1)

c1
=

sin (θ2)

c2
(6.2)

6.2.2.1 Attenuation

Attenuation is the loss of acoustic energy when progressing through a medium as a result

of scattering and diffraction. The specimen thickness to curvature ratio must be adequately

large when taking attenuation measurements, otherwise, the curvature interface can cause sig-

nificant additional diffraction leading to an increase in measured material attenuation at lower

frequencies [Papadakis (1966)]. This increase in attenuation at lower frequencies is observable

in Figure 6.42. In this case, a curvature correction could be explored for attenuation measure-

ments so that the contribution of curvature diffraction can be separated from the contribution

of material attenuation.
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Figure 6.40 Far-field scattering amplitude for a hemispherical pit theory Ah is compared to

the measurement value A (ω)h with a ka = 1 frequency domain shift applied.

Figure previously published [Eason et al. (2017b)].

Figure 6.41 Snell’s law showing divergent beam. Blue axes are normal to vertical incident

beam. Red axes are normal to pipe outside surface tangent line at end of illumi-

nated 25 mm diameter area per beam propagation simulation.
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Figure 6.42 Comparing the attenuation measurements from the flat surface with εα = 0.004

and the curved surface with εα = 0.02.
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6.2.2.2 Scattering Amplitude

A full comparison of scattering amplitude theory and measurements for hemispherical pits

in flat and curved surfaces are shown in Figure 6.43. The two specimens were fabricated

from steels with slightly different material properties resulting in slightly different theoretical

scattering amplitude curves; the flat material had a longitudinal to shear wave speed ratio of

kl
ks

= 1.82, and for the curved material kl
ks

= 1.86. The same bandwidth limits and Nyquist

criterion from Figures 5.34 and 6.40 are also shown in Figure 6.43 for both materials.

Figure 6.43 Comparison of scattering amplitude theory and measurements for flat and curved

surfaces.
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6.3 Summary

The work in Chapter 5 on hemispherical pit scattering on a flat surface was extended

to hemispherical pit scattering on a curved surface by applying similar experimentation and

analysis methods. Scattering amplitude results were presented for a hemispherical pit on a

curved surface from an immersion experiment and curvature effects were discussed. The work

is extended further for contact measurement simulation and experiments in Chapter 7.
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CHAPTER 7. ELASTIC WAVE SCATTERING - CURVE SURFACE -

CONTACT MEASUREMENT

A contact transducer simulation and experimental measurements are provided to evaluate

the scattering of a hemispherical pit on a curved surface.

7.1 Simulation

The CIVA semi-analytical elastodynamic commercial ultrasonic simulation tool with Auld

reciprocity, ray tracing, and pencil beam model techniques [Calmon et al. (2006)] was used to

model the incident wave propagation and flaw scattering behavior.

7.1.1 Wave Propagation

The test specimen is a steel cylinder of 114.3 mm outside diameter, 9 mm thickness, 75 mm

length, and a 90 degree angular section with a density of 7.8 gm/cm3, longitudinal wave speed

of 5900 m/s, and a transverse wave speed of 3230 m/s. The probe is a single circular flat

contact longitudinal wave 6 mm diameter transducer. The probe has a flat 0 degree wedge

of the same diameter as the transducer, a thickness of 0.01 mm, and the same steel material

as the test specimen. The transducer has 100% bandwidth at -3 dB with a central frequency

of 10 MHz with a Gaussian filter and 512 sampling points per signal with a 0 degree phase

offset. The coupling material directly below the probe is water with a density of 1 gm/cm3

and a longitudinal wave speed of 1483 m/s. The bottom and top surface medium is air with

a density of 0.001 gm/cm3 and a longitudinal wave speed of 330 m/s. A simulation is setup

as a three dimensional computation of both longitudinal and transverse waves considering the

direct mode, mode conversion, back-wall reflection, and internal reflection. The computation
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zone was set at a 0.25 mm step size. Neither attenuation nor noise is considered in the specimen,

wedge, or coupling mediums. The initial model without a pit is shown in Figure 7.1 with the

three dimensional wave propagation results at various points in time shown in Figures 7.2-7.7.

Figure 7.1 Model configuration without flaw.

Figure 7.2 Simulation results at 0.07 µs. Figure previously published [Eason et al. (2017c)].
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Figure 7.3 Simulation results at 0.81 µs. Figure previously published [Eason et al. (2017c)].

Figure 7.4 Simulation results at 1.55 µs. Figure previously published [Eason et al. (2017c)].
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Figure 7.5 Simulation results at 2.27 µs. Figure previously published [Eason et al. (2017c)].

Figure 7.6 Simulation results at 2.99 µs. Figure previously published [Eason et al. (2017c)].
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Figure 7.7 Maximum amplitude results. Figure previously published [Eason et al. (2017c)].

7.1.2 Flaw Scattering

A 2 mm diameter spherical flaw was added directly below the transducer centered on the

inside pipe diameter as shown in Figure 7.8 to simulate a hemispherical pit. The reflection

from the front and back-wall surfaces was analyzed as a Kirchoff reflection. The back-wall

response was combined with the scattering response from the pit considering four scenarios:

i) no flaw, ii) spherical flaw with separation of variables (SOV), iii) spherical flaw with Kirchoff

approximation, and iv) hemispherical flat bottom hole (FBH) with a Kirchoff approximation.

The simulated time domain voltage amplitude response for all factors are shown in Figure 7.9.

There is no significant difference in the amplitude response among the three pit defects. The

spherical flaw SOV responses are subtracted from the baseline as shown in Figure 7.10. The

time domain signals were adjusted for a DC offset, multiplied by a Tukey windowing function,

zero padded, adjusted again for an offset, and taken through a Fourier transform resulting in

the frequency domain plots also shown in Figure 7.10.
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Figure 7.8 Model configuration with a 2 mm diameter pit flaw.

Figure 7.9 Simulated response amplitude in time domain showing all three scattering models

are similar.
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Figure 7.10 Simulated voltage response amplitude and spectral magnitude. Figure previously

published [Eason et al. (2017c)].
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7.2 Experiment

A manual direct coupled experimental measurement was completed on an A106B carbon

steel 4-inch nominal calibration pipe specimen of 9.0 ± 0.5 mm thickness and 114.3 ± 1.3 mm

outside diameter with a machined hemispherical pit of 2.00 ± 0.005 mm diameter. A 10 MHz

longitudinal wave flat 6.3 mm manual ultrasonic contact transducer [Olympus V112] was cou-

pled to the outside of the pipe in two locations: i) away from the hemispherical pit, and

ii) directly above the hemispherical pit.

The measurements were collected with a bench-top pulser-receiver [Tecscan UTPR-CC-50]

and a digital storage oscilloscope [LeCroy HDO4002]. The transducer was coupled to the pipe

outside diameter with a spring loaded fixture and water based gel couplant. The transducer

was actuated with a square pulse of 300V and 90.0 ns width with 45 Ω damping and a pulse-

repetition frequency of 100 Hz.

The received signals were captured within a 6V amplitude window at a 2mV interval and

within a 5 µs time window at a 0.4 ns interval resulting in 12500 points per signal. The received

signals were captured without averaging with a 1 MHz high-pass filter at gain values of 0 dB,

7 dB, and 25 dB. All measurements were collected over a few minutes at a constant ambi-

ent temperature of 25°C. The same offset, Tukey windowing, padding, and Fourier transform

process was applied.

The time domain and frequency plots for the 0 dB gain measurements are shown in Fig-

ure 7.11. The defect is difficult to observe in the time domain plot at 2.8 µs. However, a

change in spectral frequency magnitude is present, and this change is even more apparent in

the subtracted signal.

The time domain and frequency plots for the 7 dB gain measurements are shown in Fig-

ure 7.12. The gain was set to the maximum value while still avoiding saturation of the back-wall

reflection. The defect is still difficult to observe in the time domain plot at 2.8 µs. A prac-

tically identical change in spectral frequency magnitude can be observed as compared to the

0 dB measurement.
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Figure 7.11 0 dB gain measurement voltage response amplitude and spectral magnitude.

The time domain and frequency plots for the 25 dB gain measurements are shown in Fig-

ure 7.13. The gain was set to the maximum value while still avoiding saturation of the defect

reflection. The defect is observable in the time domain plot at 2.8 µs. However, the resulting

spectral frequency magnitude plot is not useful as a result of the back-wall saturation.

The high frequency spectral components greater than 15 MHz are not present in Fig-

ures 7.11-7.13 as a result of the 10 MHz transducer bandwidth limitation to transmit and

receive in this range.
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Figure 7.12 7 dB gain measurement voltage response amplitude and spectral magnitude. Fig-

ure previously published [Eason et al. (2017c)].
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Figure 7.13 25 dB gain measurement voltage response amplitude and spectral magnitude.
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7.3 Summary

A contact transducer simulation and experimental measurements were provided to evaluate

the scattering of a hemispherical pit on a curved surface.
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CHAPTER 8. ACCURACY, PRECISION, AND RELIABILITY OF

ULTRASONIC THICKNESS MEASUREMENTS

The accuracy, precision, and reliability of structural health monitoring thickness measure-

ment systems must be sufficient to provide a better understanding of the integrity risk as-

sociated with refining crude oils of higher acid concentration. It is prudent to first establish

a method to statistically quantify the measurement uncertainty, then apply the method to a

significant number of sensors in a baseline scenario on a smooth surface at ambient temper-

ature before taking measurements in more extreme environments at elevated temperatures,

for rough back-wall surfaces, and for system degradation over time. This chapter addresses

sources of uncertainty in structural health monitoring ultrasonic thickness measurements, pro-

poses a weighted censored relative likelihood analysis method to capture asymmetric measure-

ment uncertainty, and demonstrates the method using sol-gel transducers [Barrow et al. (1996);

Kobayashi et al. (2009); Kobayashi and Jen (2012)] in calibration of a measurement system and

in establishing the baseline thickness measurement error accuracy and precision for a number

of relatively simple time-of-flight thickness calculation methods.

To demonstrate uncertainty factor quantification, two longitudinal wave ultrasonic thick-

ness structural health monitoring experiments are conducted i) on a flat calibration block at

ambient temperature with forty four thick-film sol-gel transducers and various time-of-flight

thickness calculation methods, and ii) on a curved pipe specimen with a flat bottom hole. In

each experiment, as an initial calibration, the voltage response signals from each sensor are

used to determine the common material velocity as well as the signal offset unique to each

calculation method. Next, the measurement precision of the thickness error of each method is

determined with a proposed weighted censored relative maximum likelihood statistical analysis

technique incorporating the propagation of asymmetric measurement uncertainty. The results
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are presented as upper and lower confidence limits analogous to the a90/95 terminology used in

industry recognized Probability-of-Detection assessments. This new statistical method may be

used to quantify the propagation af asymmetric measurement uncertainty.

Finally, a reliability study of a structural health monitoring sensor system is presented to

explore time domain independent and dependent sources of variability.

8.1 Background

A background on ultrasonic thickness measurements and factors influencing structural

health monitoring ultrasonic thickness (SHM-UT) measurement uncertainty are discussed.

8.1.1 Ultrasonic Thickness Measurement

A bulk wave ultrasonic thickness measurement technique for corrosion monitoring can be

applied with temporary or permanent coupling of a transducer to the outside surface of a

pipe; the pipe wall thickness can be determined from the time difference between transducer

excitation and reception of the reflected wave from the back-wall surface [Matthies (1998);

Burch (2012)].

8.1.2 SHM-UT Measurement Uncertainty

Measurement uncertainty for permanently installed, fixed, structural health monitoring ul-

trasonic thickness measurement systems can be categorized as follows: accuracy of a single

sensor measurement, precision among multiple measurements of a single sensor, precision of a

single measurement among multiple sensors, and reliability of measurements over time. The

accuracy of a single sensor measurement can be influenced by the sampling rate, transducer

bandwidth, excitation frequency, time-of-flight calculation method [Barshan (2000)], as well as

the velocity, offset, and temperature calibration. The precision among multiple measurements

of a single sensor (over a short time period) can be described as measurement repetition uncer-

tainty and can be influenced by system stability. The precision of a single measurement among

multiple sensors (over a short time period) can be described as spatial variation among an array
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of sensors and can be influenced by sensor fabrication consistency, coupling consistency, acous-

tic velocity material variation (caused by spatial temperature variation), and variation in the

back-wall surface roughness [Jarvis and Cegla (2012); Benstock et al. (2014)]. The reliability

of a single (or multiple) measurement(s) from a single (or array) of sensors can be described

as temporal variation and can be influenced by piezoelectric aging, coupling degradation, elec-

tronics and cabling degradation, changing back-wall surface morphology, and acoustic velocity

temporal variation (caused by temporal temperature variation). Other factors can also influ-

ence measurement uncertainty such as pulse-echo or pith-catch configuration, supply voltage,

pipe geometry curvature, and the presence of a tapered back-wall [Matthies (1998)].

Only the following accuracy and precision sources of uncertainty are quantified in this

chapter by comparing measurements with known true thickness reference values (over a short

time period): sampling rate, time-of-flight calculation method, velocity and offset calibration,

measurement repetition, and fabrication and coupling consistency.

8.2 Theory

The statistical theory on ultrasonic thickness measurement error includes: i) uncertainty

analysis including location-scale distributions, ii) relative likelihood, iii) censored relative likeli-

hood, and iv) the proposed weighted censored relative likelihood. Finally, specific details of the

likelihood methodology applied to various measurements to generate asymmetric a05/05 lower

and a95/95 upper confidence limits is described.

8.2.1 Ultrasonic Thickness Measurement Error

The measured thickness tm is related to the bulk longitudinal wave speed c and the time-

of-flight of a feature from the first back-wall reflection for a pulse-echo (single transducer) τ1PE

configuration as shown in Equation 8.1 and pitch-catch (two transducers) τ1PC configuration

as shown in Equation 8.2 where τo is a time offset and xp is the center distance (pitch) between

the two transducers neglecting pipe curvature. The wave speed c and time offset τo can be

specified during initial calibration. The offset time is not necessary when multiple reflections
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are present on a calibration block, but multiple reflections may not be present with a rough

back-wall surface as a result of internal pipe corrosion [Matthies (1998)].

tm =
c (τ1PE − τo)

2
(8.1)

tm =

√(
c (τ1PC − τo)

2

)2

−
(xp

2

)2
(8.2)

Figure 8.1 Thickness measurement Probability Density Function to demonstrate measure-

ment accuracy represented as a thickness error te, and measurement precision

represented as positive and negative thickness error uncertainty σ+
te and σ−te . The

thickness error te can be positive or negative defined as the difference between

measured thickness tm and true thickness tt as shown in Equation 8.3. Figure

previously published [Eason et al. (2016a)].

The thickness measurement error for a pulse-echo configuration te is analogous to mea-

surement accuracy as presented in Figure 8.1 and is defined in Equation 8.3 as the difference

in measured thickness tm and true thickness tt. The uncertainty of the thickness measure-

ment error σte is analogous to measurement precision as presented in Figure 8.1 and defined

in Equation 8.4 with σc as the velocity uncertainty, στo as the time offset uncertainty, σtt as

the true thickness dimensional uncertainty, and στ1 as the time-of-flight measurement uncer-

tainty. The measurement error uncertainty σte in Equation 8.4 is determined by propagation of

uncertainty [Ku (1966)] while assuming correlation among terms is secondary such that covari-

ance is neglected. A positive thickness measurement error σ+
te indicates a measured thickness
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greater than the true thickness; a negative thickness measurement error σ−te indicates a mea-

sured thickness less than the true thickness. The consequence of a positive or negative thickness

measurement error is not the same in a corrosion monitoring application; therefore, measure-

ment error asymmetry is of interest.

te =
c (τ1 − τo)

2
− tt (8.3)

σ±te =

√√√√(τ1 − τo)2 σ±c
2

4
+
c2
(
σ±τ1

2
+ σ∓τo

2
)

4
+ σ∓tt

2
(8.4)

The resulting thickness measurement error uncertainty for a pitch-catch configuration is

shown in Equation 8.5. For when xp and σxp are zero, Equation 8.5 would reduce to be the

same as Equation 8.4.

σ±te =

√√√√√(τ1 − τo)4 c2σ±c
2

+ c4 (τ1 − τo)2
(
σ±τ1

2
+ σ∓τo

2
)

+ xp2σxp∓
2

4
(
c2 (τ1 − τo)2 − xp2

) + σ∓tt
2

(8.5)

8.2.2 Uncertainty Analysis

The uncertainty components in Equations 8.4 and 8.5 can be described as either Type B,

the intrinsic measurement resolution limit, or as Type A, the natural variation that is present

among a set of measurements [Taylor and Kuyatt (1994)]. Type A uncertainty can be modeled

with location scale-distributions. Type B uncertainty can be incorporated into such distribution

models with a censored relative likelihood analysis method.

8.2.2.1 Location-Scale Distributions

The probability density functions φ and cumulative distribution functions Φ of the Smallest

Extreme Value (SEV), Largest Extreme Value (LEV), and Logistic (LGS) distributions are

shown in Equations 8.6-8.11 with z = y−µ
σ as the normalized dispersion factor with y as an

individual measured value, µ as the mean, and σ as the standard deviation [Meeker and Escobar

(1998)]. The left-skewed (SEV), right-skewed (LEV), and symmetric (LGS) distributions have
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closed form cumulative distribution functions that allow for a relatively efficient computation

as compared with the Normal distribution.

φSEV = e(z−ez) (8.6)

φLEV = e(−z−e
−z) (8.7)

φLGS =
ez

(1 + ez)2 (8.8)

ΦSEV = 1− e(−ez) (8.9)

ΦLEV = e(−e
−z) (8.10)

ΦLGS =
ez

(1 + ez)
(8.11)

8.2.2.2 Relative Likelihood

The industry standard for NDE reliability assessments [Annis (2009)] applies a relative like-

lihood method to quantify measurement error uncertainty for various location-scale distribution

models. The likelihood L of a particular set of mean µ and deviation σ parameters is shown

in Equation 8.12 as the product of the probability density f of each individual measurement y

for n total measurements. A range of µ and σ parameters are analyzed with the resulting max-

imum likelihood value corresponding to µ̂ and σ̂. The relative likelihood R is a normalization

of the maximum likelihood as shown in Equation 8.13. A confidence region of the most likely µ

and σ parameters corresponding to the relative likelihood values greater than α as derived from

a χ2 distribution with two degrees of freedom is shown in Equation 8.14 [Meeker and Escobar

(1998)]. The industry recognized a90 confidence value can be determined as the cumulative

distribution point from the maximum likelihood µ̂ and σ̂ model, while the a90/95 confidence

value can be determined with the Delta method to establish Wald confidence intervals [Annis
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(2009)]; alternatively, the a90/95 confidence value can be determined using a simulation method

similar to Monte Carlo to construct a set of distribution models with the µ and σ parameters

from the relative likelihood confidence region perimeter [Eason et al. (2015b, 2016a,b)].

L (µ, σ) =
n∏
i=1

f (yi;µ, σ) =
n∏
i=1

[
1

σ
φ

(
yi − µ
σ

)]
(8.12)

R (µ, σ) =
L (µ, σ)

L (µ̂, σ̂)
(8.13)

R (µ, σ) > exp

(
−χ2

(1−α;2)

2

)
= α (8.14)

8.2.2.3 Censored Relative Likelihood

Instead of assuming a single point value for each measurement, the censored relative like-

lihood method uses an upper yU and lower yL confidence interval for each measurement as

shown in Equation 8.15 with F as the cumulative distribution function. The censored like-

lihood method has been previously applied for the normal distribution [Vardeman and Lee

(2005)] and extreme value distributions [Liu and Meeker (2015)] to account for measurement

resolution and round-off error uncertainties.

L (µ, σ) =
n∏
i=1

[F (yUi ;µ, σ)− F (yLi ;µ, σ)] =
n∏
i=1

[
Φ

(
yUi − µ
σ

)
− Φ

(
yLi − µ
σ

)]
(8.15)

8.2.2.4 Weighted Censored Relative Likelihood

The relative likelihood method does not capture an individual measurement data point

confidence interval, and the censored relative likelihood method does not consider if an in-

dividual measurement data point mean has asymmetric uncertainty. However, the individ-

ual data point mean and asymmetric measurement confidence intervals are considered in the

proposed weighted censored relative likelihood method [Eason et al. (2016a)] as described in
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Equations 8.16 or 8.17 with κ as the weight parameter ranging from κ = 0 for no censoring

(same as Equation 8.12) to κ = 1 for full censoring (same as Equation 8.15).

L (µ, σ) =

n∏
i=1

[
(1− κ) f (yi) +

κ

2
[F (yUi)− F (yLi)]

]
(8.16)

L (µ, σ) =
n∏
i=1

[
1− κ
σ

φ

(
yi − µ
σ

)
+
κ

2

[
Φ

(
yUi − µ
σ

)
− Φ

(
yLi − µ
σ

)]]
(8.17)

8.2.3 Applied Likelihood Methodology

The specific details of the applied likelihood uncertainty analysis method is described. First,

the weighted (κ = 0.5) censored relative likelihood SEV, LEV, or LGS location-scale distri-

bution model is identified to generate a confidence region (α = .05) from the corresponding

relative likelihood function. Then, a new set of potential distribution models are simulated

from the µ and σ parameters on the confidence region perimeter. Finally, the most likely mean

µ̂ from the maximum likelihood distribution is considered the most likely mean term y = µ̂,

and, the 95% upper and 5% lower confidence limits from the set of simulated distribution

models a95/95 and a05/05 are used to determine the (possibly asymmetric) upper uncertainty

σ+
y = a95/95 − y and lower uncertainty σ−y = y − a05/05. This method is applied three times in

course of determining thickness error uncertainty: velocity calibration, offset calibration, and

thickness error. A demonstration of the steps in this method can be observed in Figures 8.4-8.6.

8.3 Accuracy and Precision - Flat Back-Wall Surface

An experiment and analysis was completed using sol-gel transducers in pulse-echo mode

on a calibration block with a flat back-wall to demonstrate the weighted censored relative

likelihood method for various thickness calculation algorithms [Eason et al. (2016a)].

8.3.1 Methodology

The flat back-wall experiment and analysis methodology are described including experi-

mental setup, time-of-flight calculation methods, and considered uncertainty factors.
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8.3.1.1 Experiment Setup

A total of forty four sol-gel sensor element transducers [Barrow et al. (1996); Kobayashi

et al. (2009); Kobayashi and Jen (2012)] were directly deposited in 2 × 2 array groups onto

a flat step calibration block with a 0.10 ± 0.005 mm step size from 24.00 mm to 25.00 mm

as shown in Figure 8.2 and previously described [Eason et al. (2015a,b)]. The gain for each

sensor was individually adjusted to maximize the first back-wall reflection amplitude without

saturation. A total of 44 pulse-echo waveforms were collected for each of the sensor elements

over a period of 90 minutes at constant indoor ambient temperature resulting in 1936 individual

voltage response signals. The elements have a center frequency from 6.9 MHz to 9.1 MHz and

a bandwidth from 72% to 79% at -6 dB. One sensor did not produce a response signal and was

excluded from the analysis as an outlying data point.

Figure 8.2 AISI 1018 carbon steel eleven step calibration block from 24.00 mm to 25.00 mm

with 44 direct sol-gel transducers. Figure previously published [Eason et al.

(2016a)].

8.3.1.2 Time-of-Flight Calculation Methods

While many different thickness calculation methods exist [Svilainis (2013)], this work ad-

dresses relatively simple time-of-flight methods; the initial focus is not to discover the most

precise method, but rather, avoid the least precise among commonly used methods. A total of

87 time-of-flight measurement methods were investigated as described in Table 8.1 based on the

voltage amplitude and arrival time of various signal features within a time gate region around

the first, and sometimes second, back-wall reflection. The positive, negative, and zero-crossing
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voltage measurement refers to features at a positive, negative, or zero voltage. The rectified

voltage measurement refers to features of a rectified voltage signal. The voltage threshold refers

to features at a positive (or negative) voltage as a percentage of the maximum (or minimum)

peak voltage. The peak category refers to features at the maximum (or minimum) voltage. The

first threshold category refers to the first feature on a voltage threshold. The mean threshold

category refers to the mean of features on a voltage threshold. The peak threshold category

refers to the feature on a voltage threshold immediately preceding a maximum (or minimum)

peak feature.

Table 8.1 Time-of-flight Measurement Methods - Combinations Description

Voltage Measurement Voltage Threshold Category

Positive 75% Peak

Negative 50% Threshold - First

Zero-Crossing 25% Threshold - Mean

Rectified 20% Threshold - Peak

15%

10%

5%

Overlay plots of all 44 voltage response signals from a single sensor are shown in Figure 8.3.

Features are identified within gated regions around the first and second back-wall reflections;

slight variation of a feature is observable in Figure 8.3c as repetition uncertainty.

8.3.1.3 Considered Uncertainty Factors

The error propagation and likelihood methods applied to quantify the uncertainty compo-

nents in Equations 8.4 and 8.5 are described in detail. Any variable with a j subscript indicates

uniqueness to a particular calculation method; a k subscript indicates uniqueness to a particular

sensor; an l subscript indicates uniqueness to a particular response signal; no subscript indi-

cates applicability among all calculation methods, sensors, and response signals. The typical

absolute and relative uncertainty values for this experiment are summarized in Table 8.2.

Repetition, Sampling Rate, and Dimensional Uncertainty For each of the 87

calculation method, and each of the 43 sensors, and each of the 44 voltage response signals, the
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Figure 8.3 Overlay plots of 44 voltage response signals from a single sensor for a) the full

response, b) a close view of the first back-wall reflection, and c) a very close view

of the positive peak threshold features. The various features are observable as

positive peak [×], 10% positive threshold [•], 10% zero-crossing [•], 10% negative

threshold [•], and negative peak [×]. Figure previously published [Eason et al.

(2016a)].

feature arrival point of the first back-wall reflection τ1jkl and the feature arrival point difference

between the second and first back-wall reflections τ2−1jkl were captured. These feature arrival

points were re-converted to time units by dividing the digitized points by the sampling rate of

100 MHz. The mean feature arrival times τ1jk and τ2−1jk of the 44 voltage response signals

were captured along with the corresponding standard errors SEτ1jk and SEτ2−1jk
.

The measurement repetition uncertainty σ±Rjk of a mean feature arrival time τjk is con-

sidered Type A and can be approximated by a t-distribution with α = 0.05 and 43 degrees

of freedom [Taylor and Kuyatt (1994)] as symmetric uncertainty σ±Rjk = t(0.95,43)SEτ jk
√

43 =

2.0168 · SEτ jk
√

43.

The sampling rate uncertainty σ±S j of any mean feature is considered Type B for only the

three peak calculation methods. For a single feature, the symmetric uncertainty σ±S1j
= 5 ns;

for the difference in two features, the symmetric uncertainty σ±S2−1j
= 10 ns. For the non-peak

methods, the sampling rate uncertainty σ±S j ≈ 0 ns as such methods are linearly interpolated

between two points and the linear interpolation error << 1 ns.
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Table 8.2 Individual Factor Uncertainty Ranges for Peak and Threshold Calculation Methods

FACTORS AVERAGE UNCERTAINTY RANGE

Name Symbol Peak Methods Threshold Methods

True Thickness σttk -.005–.005mm -.02 – .02% -.005–.005mm -.02 – .02%

Sound Path σdPEk -.010–.010mm -.02 – .02% -.010–.010mm -.02 – .02%

Repetition σR2−1jk
-0.2 – 0.2ns -.002–.002% -0.8 – 0.8ns -.01 – .01%

Sampling σS2−1jk
-10 – 10ns -0.1 – 0.1% ∼ 0ns ∼ 0%

Feature Arrival στ2−1jk
-10 – 10ns -0.1 – 0.1% -0.8 – 0.8ns -.01 – .01%

Velocity σcjk -7 – 7m/s -0.1 – 0.1% -2 – 2m/s -.03 – .03%

Velocity σcj -41 – 16m/s -0.7 – 0.3% -48 – 26m/s -0.8 – 0.4%

Repetition σR1jk -0.1 – 0.1ns -.001–.001% -0.4 – 0.4ns -.004–.004%

Sampling σS1jk -5 – 5ns -.06 – .06% ∼ 0ns ∼ 0%

Feature Arrival στ1jk -5 – 5ns -.06 – .06% -0.4 – 0.4ns -.004–.004%

Offset στojk -11 – 7ns -1.6 – 1.0% -10 – 5ns -1.5 – 0.7%

Offset στoj -59 – 55ns -8.5 – 8.1% -42 – 66ns -6.2 – 9.5%

Thickness σtmjk -0.2 – 0.2mm -0.7 – 0.7% -0.2 – 0.1mm -0.8 – 0.5%

Thickness Error σtejk -0.2 – 0.2mm n/a -0.2 – 0.1mm n/a

Thickness Error σtej -0.2 – 0.2mm n/a -0.1 – 0.2mm n/a

The true thickness ttk of the calibration block ranges from 24.00 to 25.00 mm with a

corresponding Type B symmetric uncertainty fabrication tolerance σ±tt k = 0.005 mm. In pulse

echo mode, the sound path distance dPEk = 2 · ttk ranges from 48.00 to 50.00 mm with a

corresponding symmetric uncertainty σ±dPEk = 2 · σ±tt k = 0.01 mm.

Velocity Uncertainty The common material velocity c can be obtained from a ref-

erence [Selfridge (1985)] or directly measured. The measured material velocity cjk is de-

scribed in Equation 8.18 and associated uncertainty σ±c jk is described in Equation 8.19 where

σ∓τ2−1jk
= σ∓R2−1jk

+σ∓S2−1j
. These terms are input to the previously described likelihood method

with yi = cjk, yU = cjk + σ+
c jk, and yL = cjk − σ−c jk to generate the most likely material ve-

locity cj , positive uncertainty σ+
c j , and negative uncertainty σ−c j for each of the 87 calculation

methods. The method with the smallest uncertainty range (σ+
c j − σ−c j) was selected such that

c = 5909.9 m/s, σ+
c = 7.1 m/s, and σ−c = 2.9 m/s as the velocity and velocity uncertainty.

cjk =
dPEk
τ2−1jk

(8.18)
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σ±c jk = cjk

√√√√(σ±dPEk
dPEk

)2

+

(
σ∓τ2−1jk

τ2−1jk

)2

(8.19)

Offset Uncertainty The response signal offset time τoj is to compensate for the slight

difference among feature locations unique to each calculation method when considering only

the first back-wall reflection. The offset time τoj is different, and much smaller, than a delay

time that would need to be considered for any probe design without direct contact between

the piezoelectric material and pipe surface and using only the first back-wall reflection. The

measured offset time τojk is described in Equation 8.20 and associated uncertainty σ±τojk is

described in Equation 8.21 where σ±τ1jk = σ±R1jk
+σ±S1j

. These terms are input to the previously

described likelihood method with with yi = τojk, yU = τojk + σ+
τojk

, and yL = τojk − σ−τojk to

generate the most likely offset time τoj , positive uncertainty σ+
τoj

, and negative uncertainty σ−τoj

for each of the 87 calculation methods.

τojk = τ1jk −
dPEk
c

(8.20)

σ±τojk =

√√√√√σ±τ1jk
2

+

(
dPEk
c

)2
(σ∓dPEk

dPEk

)2

+

(
σ±c
c

)2
 (8.21)

Thickness Measurement Uncertainty The thickness measurement tmjk is described

in Equation 8.22 and associated uncertainty σ±tmjk is described in Equation 8.23. The thick-

ness measurement uncertainty σtmj provides an indication of measurement precision for each

calculation method.

tmjk =
c
(
τ1jk − τoj

)
2

(8.22)

σ±tmjk =
1

2

√(
τ1jk − τoj

)2
σ±c

2
+ c2

(
σ±τ1jk

2
+ σ∓τoj

2
)

(8.23)

Thickness Measurement Error Uncertainty The thickness measurement error tejk

is described in Equation 8.24 and associated uncertainty σ±tejk is described in Equation 8.25.
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These terms are input to the previously described likelihood method with yi = tejk, yU =

tejk + σ+
tejk

, and yL = tejk − σ−tejk to generate the most likely thickness measurement error

tej , positive uncertainty σ+
tej

, and negative uncertainty σ−tej for each of the 87 calculation

methods. These values provide an indication of measurement accuracy and precision for each

calculation method. The 95% upper confidence limit from the set of simulated distribution

models a95/95j
= tej + σ+

tej
is of most interest. This upper confidence limit represents the

largest expected measurement error corresponding to a measured thickness greater than the

true thickness, described as an over-reporting of the thickness.

tejk =
c
(
τ1jk − τoj

)
2

− ttk (8.24)

σ±tejk =

√√√√(τ1jk − τoj
)2
σ±c

2

4
+
c2
(
σ±τ1jk

2
+ σ∓τoj

2
)

4
+ σ∓tt k

2
(8.25)

8.3.2 Data

The average uncertainty range of each measured factor is shown in Table 8.2 for the peak

calculation methods and the threshold calculation methods. The negative values indicate the

uncertainty range less than the mean; the positive values indicate the uncertainty range greater

than the mean. The uncertainty of measured factors are determined from propagation of

measurement uncertainty. The measured true thickness, sound path, repetition, sampling,

feature arrival, and velocity uncertainty values are assumed symmetric; the measured offset,

thickness, and thickness error uncertainty values are allowed to be asymmetric. Some of the

factors are not measured, but rather determined from the weighted censored relative likelihood

method analysis; these non-measured factors and allowed to be asymmetric. The values in

Table 8.2 are not an inclusive range among all measurements, but rather an average range to

compare the typical magnitude among uncertainty factors.

The thickness error uncertainty will vary among calculation methods as displayed in Fig-

ure 8.4a for an accurate and precise calculation method and Figure 8.4b for a relatively impre-

cise method. The relative likelihood contour plot for the imprecise method from Figure 8.4b is
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shown in Figure 8.5. Three cumulative distribution function plots for the imprecise method are

shown in Figure 8.6; the thickness error measurement mean and associated asymmetric mea-

surement uncertainty confidence limits, the maximum likelihood SEV model fit, the most likely

(mean) value µ, the 95% upper confidence limit a95, and the 95% lower confidence limit a05 are

shown in Figure 8.6a; a sample of 8 distribution models from the set of location scale parame-

ters on the relatively likelihood 95% confidence region perimeter to demonstrate the simulation

of potential distribution models are shown in 8.6b; the complete set of potential distribution

models and the associated 95% upper confidence limit a95/95 and 95% lower confidence limit

a05/05 are shown in Figure 8.6c.

Figure 8.4 The thickness error calculation from the same voltage response signals for each of

the 43 sensors are shown for a) an accurate and precise calculation method and

b) a relatively imprecise calculation method. Figure previously published [Eason

et al. (2016a)].
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Figure 8.5 The relative likelihood contour plot for the relatively imprecise measurement

method from Figure 8.4 is shown. The 95% confidence region perimeter can be

taken as the set of location scale parameters µ and σ on the 0.05 contour line.

Figure previously published [Eason et al. (2016a)].

Figure 8.6 Three cumulative distribution function plots for the relatively imprecise measure-

ment method from Figures 8.4 and 8.5 are shown. Plot a) includes the thickness

error measurement point and associated asymmetric uncertainty confidence limits.

Plot b) includes a sampling from the set of location scale parameters on the rel-

atively likelihood 95% confidence region perimeter. Plot c) includes the complete

set of potential distribution models and the associated 95% upper confidence limit

a95/95 and 95% lower confidence limit a05/05. Figure previously published [Eason

et al. (2016a)].
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8.3.3 Results and Analysis

Four metrics can be considered to compare the accuracy and precision among various cal-

culation methods: the upper confidence limit
[
a95/95j

= tej + σ+
tej

]
corresponding to over-

reporting of the thickness, the lower confidence limit
[
a05/05j

= tej − σ−tej
]

corresponding to

under-reporting of the thickness, the average confidence limit
[

1
2

(
a95/95j

+ a05/05j

)]
, as well

as the maximum confidence limit
[
max

(∣∣∣a95/95j

∣∣∣ , ∣∣∣a05/05j

∣∣∣)]. For a symmetric logistic distri-

bution, all four metrics provide equivalent information, but for asymmetric largest and smallest

extreme value distributions, the distinction between metrics is of interest. The thickness error

confidence limits for each of the 87 calculation methods are organized by measurement category

in Figure 8.7a for the maximum confidence limit, and in Figure 8.7b for the upper and lower

confidence limits.

Figure 8.7 The a) thickness error absolute maximum confidence limit, and b) thickness error

upper and lower confidence limit for each of the 87 calculation methods grouped

by category are shown. Figure previously published [Eason et al. (2016a)].
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In general, the first threshold methods are more precise and accurate, the peak and peak

threshold methods are less precise, and the mean threshold methods are the least precise. The

mean threshold methods relative lack of precision is exacerbated as the maximum confidence

limits are upper confidence limits indicating a greater tendency for over-reporting of the thick-

ness as opposed to a more conservative under-reporting of the thickness. Neither the voltage

measurement nor the voltage threshold appear to have a significant influence on measurement

accuracy and precision.

8.4 Accuracy and Precision - Flat-Bottom Hole

An experiment and analysis was completed using sol-gel transducers in pulse-echo and pitch-

catch configuration on a calibration block with a flat-bottom hole (FBH) to demonstrate the

weighted censored relative likelihood method for various thickness calculation algorithms [Eason

et al. (2016b)].

8.4.1 Methodology

The FBH experiment and analysis methodology are described including experimental setup,

time-of-flight calculation methods, and considered uncertainty factors.

8.4.1.1 Experimental Setup

The measurement piece was an A106B carbon steel 4-inch nominal calibration pipe of

13.50 ± 0.07 mm thickness and 114.40 ± 0.07 mm outside diameter with a machined flat-

bottom hole (FBH) of 3.975 ± 0.002 mm diameter and 2.032 ± 0.002 mm depth as shown in

Figure 8.8. The hole dimension uncertainty is the machining tolerance provided and validated

by the manufacturer of the calibration block. A proprietary four element 2 × 2 sol-gel matrix

transducer array with 4.00 ± 0.05 mm x 4.00 ± 0.05 mm square elements and 0.90 ± 0.05 mm

spacing between element edges are characterized to have a central frequency around 8.5 to

10 MHz for each element [Eason et al. (2016b)]. The transducer was placed in five positions

around the FBH as shown in Figure 8.9. From these five positions, a total of four different

single element pulse-echo (PE) measurement configurations of A, B, C, and D, and a total of
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nine different two element pitch-catch (PC) measurement configurations of E, F, G, Gr, H,

Hr, I, J, and Jr were considered as categorized by perpendicular distance to the central ray

path as shown in Table 8.3 and Figure 8.10 with r indicating the reverse path to distinguish

configurations that are not symmetric. A total of 80 PE and PC combinations among five

positions resulted in either four or eight measurements per configuration.

Figure 8.8 Picture of a) sol-gel transducer, b) calibration pipe, and c) flat-bottom hole (FBH).

Figure previously published [Eason et al. (2016b)].

Figure 8.9 Measurement a) Position 0 - central FBH, b) Position 1 - FBH below element 1,

c) Position 2 - FBH below element 2, d) Position 3 - FBH below element 3, and

e) Position 4 - FBH below element 4. Figure previously published [Eason et al.

(2016b)].

The measurements were collected with a benchtop pulser-receiver [Tecscan UTPRCC-50

SN 000065] and a digital storage oscilloscope [LeCroy HDO4002]. The transducer was coupled

to the pipe outside diameter with a spring loaded fixture and water based gel couplant. The

transducer was actuated with a square pulse of 100V and 45.0 ns width with 45 Ω damping

and a pulse-repetition frequency of 500 Hz. The received signals were captured within a 6V

amplitude window at a 2mV interval and within a 10 µs time window at a 0.4 ns interval
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Table 8.3 Measurement Configuration and Perpendicular Distance from FBH to Ray Path

Measurement Position 0 Position 1 Position 2 Position 3 Position 4

PE 1-1 (B) 3.5mm (A) 0.0mm (C) 4.9mm (C) 4.9mm (D) 7.1mm

PE 2-2 (B) 3.5mm (C) 4.9mm (A) 0.0mm (D) 7.1mm (C) 4.9mm

PE 3-3 (B) 3.5mm (C) 4.9mm (D) 7.1mm (A) 0.0mm (C) 7.1mm

PE 4-4 (B) 3.5mm (D) 7.1mm (C) 4.9mm (C) 4.9mm (A) 0.0mm

PC 1-2 (F) 2.5mm (G) 0.0mm (Gr) 0.0mm (J) 4.9mm (Jr) 4.9mm

PC 1-3 (F) 2.5mm (G) 0.0mm (J) 4.9mm (Gr) 0.0mm (Jr) 4.9mm

PC 1-4 (E) 0.0mm (H) 0.0mm (I) 3.5mm (I) 3.5mm (Hr) 0.0mm

PC 2-1 (F) 2.5mm (Gr) 0.0mm (G) 0.0mm (Jr) 4.9mm (J) 4.9mm

PC 2-3 (E) 0.0mm (I) 3.5mm (H) 0.0mm (Hr) 0.0mm (I) 3.5mm

PC 2-4 (F) 2.5mm (J) 4.9mm (G) 0.0mm (Jr) 4.9mm (Gr) 0.0mm

PC 3-1 (F) 2.5mm (Gr) 0.0mm (Jr) 4.9mm (G) 0.0mm (J) 4.9mm

PC 3-2 (E) 0.0mm (I) 3.5mm (Hr) 0.0mm (H) 0.0mm (I) 3.5mm

PC 3-4 (F) 2.5mm (J) 4.9mm (Jr) 4.9mm (G) 0.0mm (Gr) 0.0mm

PC 4-1 (E) 0.0mm (Hr) 0.0mm (I) 3.5mm (I) 3.5mm (H) 0.0mm

PC 4-2 (F) 2.5mm (Jr) 4.9mm (Gr) 0.0mm (J) 4.9mm (G) 0.0mm

PC 4-3 (F) 2.5mm (Jr) 4.9mm (J) 4.9mm (Gr) 0.0mm (G) 0.0mm

resulted in 25000 points per signal. The received signals were captured without averaging with

a 2.5 MHz high-pass filter by increasing the gain until either the first reflected signal positive

or negative peak reached 80% of the saturation level at a +2.24V or -2.65V threshold. Typical

gain values were 42 dB for pulse-echo, 56 dB for pitch-catch adjacent, and 58 dB for pitch-catch

diagonal. Each signal was captured 5 times over a few seconds resulting in a total of 400 FBH

measurements as well as 80 initial and 80 final velocity calibration measurements away from the

FBH. All 560 measurements were collected over a few hours at constant ambient temperature

of 25 ± 1 °C measured from the lab thermostat.

8.4.1.2 Time-of-Flight Calculation Methods

Many thickness calculation methods exist [Svilainis (2013)]; a total of 63 calculation meth-

ods are considered and described as 1) the arrival time of Peak, First Threshold, Mean Thresh-

old, and Peak Threshold features at 2) various voltage threshold levels as a percentage of peak

amplitude for 3) positive, negative, zero-crossing, and rectified measurements.
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Figure 8.10 Measurement configurations with ray path direction as a dashed arrow line and

perpendicular distance from ray path to the FBH as a solid line for (a)-(d) pulse-

echo and (e)-(j) pitch-catch. Figure previously published [Eason et al. (2016b)].

8.4.1.3 Considered Uncertainty Factors

The same process as in the flat back-wall experiment was followed for the flat-bottom hole

experiment to determine the same uncertainty factors: repetition, sampling rate, dimensional,

velocity, offset, thickness measurement, and ultimately thickness measurement error.

8.4.2 Data

Signal features from the first and second flat-bottom hole and back-wall reflections can be

observed in the voltage signal in Figure 8.11. The amplitude response from the flat-bottom

hole may be compared with an analytical model [Sedov et al. (1992)] in future work.

8.4.3 Results and Analysis

The upper confidence limit a95/95 corresponding to over-reporting of thickness is shown in

Figure 8.12 for 63 calculation methods. This is a conservative presentation of results not to

be confused with the median (or expected) thickness error. Configurations C, D, H, Hr, I, J,

and Jr are relatively imprecise; almost none of the calculation methods for these configurations

have an upper confidence limit less than the depth of the FBH at 2 mm.
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Figure 8.11 Voltage response signal from configuration B in a) full response and b) rectified

format showing the first FBH reflection [4.0 µs] and first back-wall reflection

[4.7 µs]. The features are observable as positive peak [×], 15% positive threshold

[•], 15% zero-crossing [•], 15% negative threshold [•], and negative peak [×].

Figure previously published [Eason et al. (2016b)].

Figure 8.12 Thickness calculation method measurement error upper confidence limits grouped

by configuration. Figure previously published [Eason et al. (2016a)].



www.manaraa.com

178

The remaining configurations A, B, E, F, G, and Gr are relatively precise and shown

in Figure 8.13 grouped by calculation method with the following observations: i) the only

relatively precise methods for configurations B, G, and Gr, are categorized as First Threshold,

ii) all methods are relatively precise for configuration E, however, this may be skewed due to

a uniquely small sample size, and iii) the Peak and Peak Threshold methods are consistently

relatively precise for configuration A, but not configuration F.

Figure 8.13 Thickness calculation method measurement error upper confidence limits grouped

by configuration and method: P - Peak, FT - First Threshold, MT - Mean Thresh-

old, PT - Peak Threshold. Figure previously published [Eason et al. (2016b)].

The upper confidence limit results are generally greater than in the flat back-wall example

in Figure 8.7. A comparison of measured uncertainty factors from the flat back-wall to the flat-

bottom hole experiments ares as follows: Sound Path Distance - increase to 0.5%, Repetition -

increase to 0.08%, Sampling - decrease to 0.006%, Feature Arrival - similar at 0.1%, Measured

Velocity - increase to 0.5%. The resulting Modeled Velocity, Offset, Thickness, and Thickness

Error uncertainties are ultimately greater due to the increased thickness uncertainty in the

calibration pipe as compared to the machined calibration block, in addition, there is a decrease

in the number of measurements per model from 43 to either 16, 8, or 4. The underlying sys-
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tematic increase in uncertainty present in this experiment is regardless of the introduced pitch

distance uncertainty in pitch-catch configurations and regardless of the introduced influence

of the FBH. The contribution from Sampling uncertainty is very small based on the digital

storage oscilloscope 0.4 ns sampling interval relative to the feature arrival time for the peak

calculation methods typically around 5 µs.

8.5 Reliability - System Degradation

There is a general industry need to integrate the spatial domain and time domain variability

and uncertainty into the qualification process for SHM measurement systems. While there has

been some recent effort in this space [Li et al. (2015); Aldrin et al. (2016); Forsyth (2016);

Gianneo et al. (2016); Lindgren (2016); Meeker (2016); Schmitte et al. (2016)], a consensus on

how to quantify the multi-parameter and multi-domain sources of independent and dependent

variation and uncertainty does not currently exist; it is of interest to develop such a statistical

framework.

A robust statistical framework is not provided in this work, however, a reliability evaluation

for the degradation of an experimental structural health monitoring system with time domain

data variability is described. A study was conducted to test the reliability of a set of 40

prototype sensors in an accelerated lifecycle environment. The purpose of the study was to

determine if 90% of the sensors would survive beyond a specified lifetime. The analysis is based

on known statistical methods (Meeker and Escobar, 1998) using JMP® commercial software

(SAS Institute, 2014).

8.5.1 Methodology

Each of the 40 sensors had a signal reading collected every 12 hours up until 204 readings

(2448 hours). At this point, the electronics system was upgraded, and all failed and surviving

sensors were repaired, recalibrated, and reinstalled. The experiment continued to collect data on

all 40 sensors every 12 hours up to 103 readings (1236 hours) under a similar accelerated lifecycle

environment. A failed sensor has been defined conservatively as any sensor that produces an

unacceptable signal based on any of the following signal characteristics: low signal to noise
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ratio (Type N), low amplitude (Type A), excessive oscillations (Type R), and signal distortion

(Type D).

8.5.2 Data

The initial experiment data prior to the repair is summarized in Table 8.4 and after the

repair summarized in Table 8.5.

8.5.3 Analysis

A non-parametric plot of the initial data is shown in Figure 8.14. There are three occur-

rences around 600 hours, 1600 hours, and 1700 hours where many sensors failed within in a

short period of time indicating the possibility of non-independent systematic failures. Such

systematic failures could be the result of an unreliable common electronics grounding design

that was ultimately repaired after 2448 hours. Therefore, any failure within 24 hours of a

previous failure of the same mechanism was right censored in an attempt to provide a more

independent failure data set as shown in Figure 8.14.

Figure 8.14 Plots for non-parametric dependent (left) and non-parameteric independent

(right) initial data.
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Table 8.4 Initial Failure Data

Sensor Name Failure [Reading Number] Failure [Hours] Censor Failure

311 45 540 None Type R

209 46 552 None Type R

214 47 564 None Type R

218 47 564 None Type R

316 60 720 None Type N

310 66 792 None Type N

301 76 912 None Type A

201 114 1368 None Type A

307 132 1584 None Type R

313 132 1584 None Type R

315 132 1584 None Type R

317 132 1584 None Type R

208 133 1596 None Type R

213 133 1596 None Type R

210 133 1596 None Type R

217 133 1596 None Type R

308 133 1596 None Type R

207 134 1608 None Type R

212 134 1608 None Type R

211 138 1656 None Type R

318 142 1704 None Type R

220 142 1704 None Type R

206 143 1716 None Type R

205 143 1716 None Type R

304 144 1728 None Type R

203 146 1752 None Type R

202 160 1920 None Type R

306 165 1980 None Type R

302 181 2172 None Type R

309 184 2208 None Type R

320 204 2448 Right None

204 204 2448 Right None

215 204 2448 Right None

216 204 2448 Right None

219 204 2448 Right None

303 204 2448 Right None

305 204 2448 Right None

312 204 2448 Right None

314 204 2448 Right None

319 204 2448 Right None
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Table 8.5 Failure Data After Repair

Sensor Name Failure [Reading Number] Failure [Hours] Censor Failure

208 0 0 Left Type A

320 0 0 Left Type A

206 5 60 None Type A

310 13 156 None Type N

318 13 156 None Type R

301 23 276 None Type N

209 24 288 None Type A

201 24 288 None Type A

207 24 288 None Type A

203 56 672 None Type A

212 65 780 None Type A

213 85 1020 None Type A

202 85 1020 None Type A

220 93 1116 None Type A

211 100 1200 None Type R

311 103 1236 Right None

214 103 1236 Right None

218 103 1236 Right None

316 103 1236 Right None

307 103 1236 Right None

313 103 1236 Right None

315 103 1236 Right None

317 103 1236 Right None

210 103 1236 Right None

217 103 1236 Right None

308 103 1236 Right None

205 103 1236 Right None

304 103 1236 Right None

306 103 1236 Right None

302 103 1236 Right None

309 103 1236 Right None

204 103 1236 Right None

215 103 1236 Right None

216 103 1236 Right None

219 103 1236 Right None

303 103 1236 Right None

305 103 1236 Right None

312 103 1236 Right None

314 103 1236 Right None

319 103 1236 Right None
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Multiple failure distribution models were fit to the independent failure data set for the

following scenarios: i) ignoring failure mechanism, ii) isolating failure mechanism Type A,

iii) isolating failure mechanism Type N, and iv) isolating failure mechanism Type R. The best

fit distribution for each scenario is shown in Figure 8.15. The fit of the Weibull distribution

for each scenario is adequate as shown in Figure 8.16.

Figure 8.15 Initial data best fit distributions for specific failure mechanisms.

Figure 8.16 Initial data Weibull distribution for specific failure mechanisms.

The failure modes have been combined using the best fit distribution models to each fail-

ure mechanism as well as using Weibull distributions for each failure mechanism as shown in

Figure 8.17.

The experiment continued after the electronics and sensors were repaired at 2448 hours.

The repair data was analysed in a similar fashion by approximating an independent data set and

then fitting distributions to different failure mechanism scenarios as shown in Figures 8.18-8.21.
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Figure 8.17 Initial data combined failure models.

Figure 8.18 Plots for non-parametric dependent (left) and non-parametric independent (right)

repair data.
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Figure 8.19 Repair data best fit distributions for specific failure mechanisms.

Figure 8.20 Repair data Weibull distribution for specific failure mechanisms.

Figure 8.21 Repair data combined failure models.
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8.5.4 Results

The estimated 10% failure quantile t0.10 information from all scenarios is shown in Table 8.6

for best fit and Weibull distributions.

Table 8.6 Initial and Repair Dataset 10% Failure Quantiles

Scenario
t0.10

Lower 95% Estimate Upper 95%

Initial

Best Fit

Ignore Weibull 825 1182 1692

A Frechet 982 2730 7592

N Frechet 646 3405 17941

R Logistic 1258 1671 2084

Combined 766 1262 1759

Weibull

Ignore Weibull 825 1182 1692

A Weibull 1127 2717 6548

N Weibull 775 3355 14518

R Weibull 1228 1594 2067

Combined 781 1244 1707

Repair

Best Fit

Ignore Weibull 183 441 1061

A Weibull 410 862 1809

N Frechet 152 3127 64362

R Weibull 433 1961 8890

Combined 71 459 847

Weibull

Ignore Weibull 183 441 1061

A Weibull 410 862 1809

N Weibull 211 2955 41297

R Weibull 433 1961 8890

Combined 61 463 864

There are four scenarios where the best fit distribution is not Weibull: Initial Type A,

Initial Type N, Initial Type R, and Repair Type N. All four of these scenarios can be compared

to a Weibull distribution as shown in Table 8.6. All four scenarios are very similar in terms

of mean and 95% confidence intervals. As a result, the combined failure mechanism scenarios

are also very similar for the initial data and the repair data. Therefore, it is reasonable to use

Weibull distributions to approximate all scenarios. The estimated model parameters assuming

a Weibull distribution for all scenarios are shown in Table 8.7.
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Table 8.7 Model Parameter Values for Different Scenarios Assuming Weibull Distribution

Scenario Failures

β α

Lower
Estimate

Upper Lower
Estimate

Upper

95% 95% 95% 95%

In
it

ia
l

Ignore 12 1.36 2.37 3.72 2414 3054 4875

A 2 0.79 1.78 - 1134 9616 81625

N 2 0.48 1.12 - 670 25212 948620

R 8 2.22 3.49 8.22 2287 3034 4025

Combine 12 - - - - - -

R
ep

ai
r

Ignore 9 0.49 0.98 1.72 2073 4338 25176

A 5 0.68 1.25 7.18 1242 5240 22107

N 2 0.26 0.62 - 149 114026 87085395

R 2 0.45 1.05 - 383 16834 740695

Combine 9 - - - - - -

8.5.4.1 Initial Reliability

In an accelerated lifecycle environment, based on the initial test, the sensor system will

have 90% survivability between 781 and 1707 hours with 95% confidence using the Weibull

distribution combined failure mechanism model.

The 10% failure quantile of the combined failure mechanism model is very similar to the 10%

failure quantile of the model that ignores damage mechanisms at between 825 and 1692 hours.

The Weibull distribution of the ignored damage mechanism scenario results in a β parameter

of 2.37, indicating an overall wear-out failure mechanism. Taking a closer look, by isolating the

possible failure mechanisms, the wear-out is dominated by the Type R mechanism with a β

parameter of 3.49 (as well as the having the majority of failures). The Type A mechanism and

Type N mechanism fail at a more random pace with β parameters of 1.78 and 1.12 respectively.

There are no Type D failures.

The failure behavior for similar electronics systems is expected to be random. Even the

attempt to censor systematic failures to mimic independent failure behavior does not result in

the expected random failure behavior. The observed wear-out failure mode indicates a possible

design flaw.
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8.5.4.2 Repair Effectiveness

A repair was completed after 1236 hours to address the systematic failures related to ground-

ing and prevent Type R failures. Post-repair, the 90% survivability was lower between 61 and

864 hours with 95% confidence using the Weibull distribution combined failure mechanism

model. This indicates that the repair did not fully return the sensor and electronics system

to the original state of quality. The 10% failure quantile of the combined failure mechanism

model is very similar to the 10% failure quantile of the model that ignores damage mechanisms

at between 183 and 1064 hours. The Weibull distribution of the ignored damage mechanism

scenario results in a β parameter of 0.98, indicating a more random failure mechanism. Taking

a closer look, by isolating the possible failure mechanisms, the random failure is common among

Type A, Type N, and Type R failures with β parameters of 1.25, 0.62, and 1.05 respectively.

Again, there are no Type D failures.

Another approach is to compare the 10% failure quantile of each individual failure mech-

anism before and after the repair. Type R failures have an estimated 90% survivability of

1594 hours before the repair and 1961 hours after the repair, but this improvement may not be

statistically significant as the confidence intervals have a large overlap. Type A failures have

an estimated 90% survivability of 2717 hours before the repair and 862 hours after the repair,

but this decline may not be statistically significant as the confidence intervals overlap. Type N

failures have an estimated 90% survivability of 3355 hours before the repair and 2955 hours

after the repair, but this decline may not be statistically significant as the confidence intervals

have a large overlap.

The repair to fix the electronics grounding was likely not effective at returning the system

to its original state of quality as observed by a decrease in 90% survivability time; but the

repair may have corrected a design flaw that was causing wear-out failures as observed with

the decrease in β parameter of the overall system and more clearly observed with the decrease

in β parameter and an increase in survival time of the isolated Type R failure mechanism. The

post-repair failure behavior was more typical of similar electronics systems indicating that a

significant design flaw may have been corrected with the repair.
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8.6 Summary

This chapter proposed a weighted censored relative likelihood method to capture asym-

metric measurement uncertainty as applied to a sol-gel ultrasonic thickness structural health

monitoring measurement system. This new statistical method may be used to quantify the

propagation af asymmetric measurement uncertainty. The upper and lower confidence limits of

measurements collected on calibration blocks over a short time period at ambient temperature

were presented for two experiments.

Finally, a statistical reliability evaluation of experimental structural health monitoring data

with time domain variability was described.
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CHAPTER 9. PROGNOSIS

Regarding prognosis information, a pipe failure condition is based on the material behavior

relation between stress and strain. Various material models may be applicable: high strength

steel is typically linear-elastic, low-strength and medium-strength steel is typically elastic-

plastic or fully plastic, and metals at high temperature are typically viscoplastic [Anderson

(2005)]. The rate of wall thinning is not necessarily uniform over the internal surface, and

in the extreme case, a single pit can initiate and grow, possibly in high temperature environ-

ments [Garverick (1994); Godard (1984); Wu et al. (2004b)]. While NDE methods can be used

to detect such pitting corrosion; the pipe failure criteria will define the necessary NDE detection

threshold. This threshold must be met by the NDE or SHM technique with consideration for

measurement uncertainty. Elastic and plastic failure criteria for steel pipe with uniform and

localized pitting corrosion is investigated via analytical and finite element methods.

9.1 Uniform Corrosion

The case of uniform corrosion is represented by a pipe with uniform wall thickness.

9.1.1 Pipe Geometry

Consider an infinitely long cylindrical pipe of isotropic material with an average diameter D

and wall thickness t under internal pressure p with no external loading at a constant and uniform

temperature. The pipe can be represented by a plane-strain model as shown in Figure 9.1. The

thin-wall approximation is not applied.
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Figure 9.1 Schematic of pipe geometry and loading model.

9.1.2 Linear-Elastic Material

A linear-elastic material model is considered for analytical and finite element stress analysis

methodologies.

9.1.2.1 Analytical Methodology

The linear-elastic stress field, defined as the stress tensor σ (r), and yield condition, defined

as the von Mises yield criterion σY , are derived from deformation geometry, momentum balance,

and linear-elastic material model equations [Sadd (2009)]. The derivation is shown via reduction

with an axisymmetric plane-strain condition. The thin-wall approximation is not applied.

First consider the axisymmetric dispalement u, strain ε, and stress σ fields for plane-strain

as shown in Equation 9.1. Normal strains εr εθ εz and shear strains εθz εzr εrθ are defined by

the geometric relations as shown in Equations 9.2-9.7.

ur (r) uθ = 0 uz = 0

εr εθ εz εθz εzr εrθ

σr σθ σz σθz σzr σrθ

(9.1)

εr =
∂ur
∂r

=
dur
dr

(9.2)
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εθ =
1

r

(
∂uθ
∂θ

+ ur

)
=
ur
r

(9.3)

εz =
∂uz
∂z

= 0 (9.4)

εθz =
1

2

(
∂uθ
∂z

+ r
∂uz
∂θ

)
= 0 (9.5)

εzr =
1

2

(
∂uz
∂r

+
∂ur
∂z

)
= 0 (9.6)

εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
= 0 (9.7)

The material model relation between stress and strain is provided by Hooke’s Law in Equa-

tion 9.8 with resulting shear stresses σθz σzr σrθ shown to be zero in Equations 9.9-9.11.

εij =
1 + ν

E
σij −

ν

E
σkkδij + α∆Tδij (9.8)

σθz =
E

1 + ν
εθz = 0 (9.9)

σzr =
E

1 + ν
εzr = 0 (9.10)

σrθ =
E

1 + ν
εrθ = 0 (9.11)

Applying the zero longitudinal strain εz from Equation 9.4 to Hooke’s Law in Equation 9.8

results in Equation 9.12 and a relation for longitudinal stress σz in Equation 9.13.

εz =
1 + ν

E
σz −

ν

E
(σr + σθ + σz) = 0 (9.12)

σz = νσr + νσθ (9.13)
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Substituting Equation 9.13 into Hooke’s Law in Equation 9.8 as a function of Young’s

modulus E, Poisson’s ratio ν, and coefficient of thermal expansion α, results in the relation for

radial strain εr in Equation 9.14 and circumferential strain εθ in Equation 9.15.

εr =
1 + ν

E
((1− ν)σr − νσθ) (9.14)

εθ =
1 + ν

E
((1− ν)σθ − νσr) (9.15)

Taking the derivative of Equation 9.15 with respect to r results in Equation 9.16.

dεθ
dr

=
1 + ν

E

(
(1− ν)

dσθ
dr
− ν dσr

dr

)
(9.16)

A differential element can be used to derive the conservation of momentum equation as

shown in Equation 9.17.

∂σr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
σr − σθ

r
+ br = 0 (9.17)

Equation 9.17 can be reduced to find the relation for radial stress σθ as shown in Equa-

tion 9.18 as well as the derivative with respect to r as shown in Equation 9.19.

σθ = r
dσr
dr

+ σr (9.18)

dσθ
dr

= r
d2σr
dr2

+ 2
dσr
dr

(9.19)

Substitution of Equation 9.3 into Equation 9.2 will result in Equation 9.20.

εr =
d

dr
(rεθ) = εθ + r

dεθ
dr

(9.20)

Substitution of Equations 9.14-9.16 into Equation 9.20 will result in Equation 9.21 and

simplified to Equation 9.22.

1 + ν

E
((1− ν)σr − νσθ) =

1 + ν

E
((1− ν)σθ − νσr) + r

(
1 + ν

E

(
(1− ν)

dσθ
dr
− ν dσr

dr

))
(9.21)
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σr − σθ = r

(
(1− ν)

dσθ
dr
− ν dσr

dr

)
(9.22)

Substitution of Equations 9.18 and 9.19 into Equation 9.22 will result in Equation 9.23 and

simplified to Equation 9.24

σr −
(
r
dσr
dr

+ σr

)
= r

(
(1− ν)

(
r
d2σr
dr2

+ 2
dσr
dr

)
− ν dσr

dr

)
(9.23)

d2σr
dr2

+
3

r

dσr
dr

= 0 (9.24)

The radial stress second order differential equation in Equation 9.24 can be solved with the

characteristic equation σr = ra and constants A and B as shown in Equation 9.25 as well as

the derivative with respect to r as shown in Equation 9.26.

σr = A+
B

r2
(9.25)

dσr
dr

= −2
B

r3
(9.26)

The circumferential stress is obtained by substitution of Equations 9.25 and 9.26 into Equa-

tion 9.18 as shown in Equation 9.27.

σθ = −2
B

r2
(9.27)

The longitudinal stress is obtained by substitution of Equation 9.25 and Equation 9.27 into

Equation 9.13 as shown in Equation 9.28.

σz = 2νA (9.28)
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Boundary conditions are applied at the inside radius a where σr |r=a= −p and at the outside

radius b where σr |r=a= 0 resulting in the stress tensor σ (r) shown in Equation 9.29.

σ (r) =
p(

b
a

)2 − 1


1−

(
b
r

)2
0 0

0 1 +
(
b
r

)2
0

0 0 2ν

 (9.29)

The von Mises yield criterion σY in terms of principal stresses σI = σr, σII = σθ, and

σIII = σz is described in Equations 9.30-9.32.

σY =

√
1

2

(
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

)
(9.30)

σY =
√
σr2 + σθ2 + σz2 − σrσθ − σθσz − σzσr (9.31)

σY =
p

√
3
(
b
r

)4
+ (2ν − 1)2(

b
a

)2 − 1
(9.32)

9.1.2.2 Analytical Results

Four pipes with various diameter to thickness ratios D
t = b+a

b−a shown in Figure 9.2 are con-

sidered. The corresponding normalized principal component and von Mises stresses are plotted

in Figure 9.3 for ν = 0.3. The largest absolute maximum normalized principal component

and von Mises stresses occur at r = a; such stresses are plotted in Figure 9.4 for a range of

diameter to thickness ratios. Only internal pressure loading is considered; static loads such

as pipe weight and support reactions, and dynamic loads such as thermal induced strain and

vibration are neglected.

The largest absolute maximum normalized principal component and von Mises stresses

occur at r = a; such stresses are plotted in Figure 9.4 for a range of diameter to thickness

ratios. Only internal pressure loading is considered; static loads such as pipe weight and support

reactions, and dynamic loads such as thermal induced strain and vibration are neglected.
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Figure 9.2 Schematic of pipe diameter to thickness ratio cases.

Figure 9.3 Normalized principal component and von Mises stress plots.
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Figure 9.4 Absolute maximum principal component and von Mises stress plot.
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9.1.2.3 Finite Element Methodology

The uniform corrosion case can be solved analytically; however, a Finite Element Method-

ology (FEM) [Zienkiewicz et al. (2005)] solution is presented for comparison. While even a one

dimensional axisymmetric model would be sufficient, a two dimensional plane-strain model of a

one quarter cross-section D
t = 7 pipe was created to provide better visualization. Four quadri-

lateral element types of linear and quadratic order with and without reduced integration were

considered (CPE4R, CPE4, CPE8R, and CPE8) [Dassault Systemes (2015)]. A unity pressure

load condition was applied on the inside radius boundary, a zero perpendicular displacement

symmetric boundary condition was applied on the radial boundaries, and a free boundary con-

dition naturally occurs on the outside radius boundary as shown in Figure 9.5 along with the

various mesh densities considered. A Poisson ratio of ν = 0.3 was the only material condition

applied.

Figure 9.5 Two dimensional plane-strain geometry, boundary conditions, and mesh densities.

9.1.2.4 Finite Element Results

The finite element normalized von Mises stress is compared to the analytical solution for

various mesh densities along the normalized radial distance for linear and quadratic order

elements with and without reduced integration as shown in Figures 9.6 and 9.7. The overall

error decreases as the number of nodes increase as expected. In regard to radial distribution,

the error is the smallest at integration points as observable in the number and location of valley
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points that coincide with the various mesh densities. Also, the relative error is largest at the

boundaries for most element types. The reduced integration quadratic elements tend to not

have the largest relative error at r = a, this is the radial distance of interest when looking for

the maximum von Mises stress value. The mesh convergence for L2 total error and error at

r = a is shown in Figure 9.8. The individual component stress errors are plotted in Figure 9.9

for the reduced integration quadratic model with the highest mesh density.

Figure 9.6 Normalized von Mises stress error for reduced (left) and full integration (right)

linear elements.

Figure 9.7 Normalized von Mises stress error for reduced (left) and full integration (right)

quadratic elements.
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Figure 9.8 Showing mesh convergence for total error (left) and error at the inside radius

location (right).

Figure 9.9 Normalized component stress error for quadratic order reduced integration ele-

ments.
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9.1.3 Plastic Material

A plastic material model is considered for analytical and finite element stress analysis

methodologies.

9.1.3.1 Analytical Methodology

A material being loaded into the plastic regime (beyond the yield stress state) will not return

to original dimensional form and will have realized a permanent deformation upon unloading.

The material yield stress state is increased as a result of the plastic deformation. The isotropic

hardening model implies that the increase in yield stress state is equal relative to each princi-

pal stress component. This is analogous to a von Mises yield surface keeping the same central

point and shape, but only increasing in size [Lubliner (2005)]. The isotropic hardening material

relation between stress and strain can be represented over the entire elastic and plastic load-

ing regime by piecewise functions shown in Figure 9.10 described as Elastic/Perfectly Plastic

(Figure 9.10 Red and Equation 9.33), Elastic/Linear-Hardening (Figure 9.10 Blue and Equa-

tion 9.34), and Elastic/Power-Hardening (Figure 9.10 Green and Equation 9.35) as well as a first

order continuous Ramberg-Osgood relation (Figure 9.10 Yellow and Equation 9.36) [Ramberg

and Osgood (1943); Dowling (1999)]. When studying material failure at the ultimate tensile

strength limit, it is reasonable to consider only the plastic strain deformation and neglect elastic

strain.

Figure 9.10 Elastic-plastic stress strain model curves.
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 σ = Eε σ ≤ σY

σ = σY ε ≥ σY
E

 (9.33)

 σ = Eε σ ≤ σY

σ = (1− δ)σY + δEε σ ≥ σY


[
δE =

σ − σY
ε− εY

]
(9.34)

 σ = Eε σ ≤ σY

σ = H1ε
n1 σ ≥ σY

 (9.35)

σ = Hεp
n (9.36)

An attempt is made to derive an analytical solution from the deformation geometry, momen-

tum balance, and Power-Hardening/Ramberg-Osgood plastic material model equations [Ram-

berg and Osgood (1943); Dowling (1999); Lubliner (2005); Sadd (2009)]. The same axisymmet-

ric plane-strain condition can be considered as for the linear-elastic material behavior. Elastic

strain εe and plastic strain εp are both considered in 9.37. Substitution of the Ramberg-Osgood

stress-strain relation in Equation 9.36 [Ramberg and Osgood (1943)] into Equation 9.37 results

in Equation 9.38.

ε = εe + εp (9.37)

ε =
σ

E
+
( σ
H

) 1
n

(9.38)

Now, neglecting elastic strain, the Ramberg-Osgood relation takes the Power-Harding form

in Equation 9.39.

σ = Hεn (9.39)

The secant moduli Es is described in Equation 9.40 by substituting the non-linear stress-

strain relation from Equation 9.39.

Es (σ) =
σ11

ε11
=
σr
εr

=
Hεr

n

εr
= Hεr

n−1 (9.40)
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The secant moduli Es is related to the shear secant moduli Gs as shown in Equation 9.41

with the stress-strain relation based on secant moduli shown in Equation 9.42.

1

2Gs (σ)
=

1

2G
+

3

2

[
1

Es (σ)
− 1

E

]
(9.41)

εij =
1

2Gs (σ)

(
σij − 1

3
σkkδij

)
− 6ν − 3

9E
σkkδij (9.42)

Applying εz = 0 from Equation 9.4 and solving Equation 9.42 for σz in combination with

Equations 9.40 and 9.41 result in Equations 9.43 and 9.44.

εr = − (3EGεr − 3GHεr
n + EHεr

n) ·(
(EHεrnσr−EHεrnσθ+GHεrnσr+5GHεrnσθ+3EGεrσr−3EGεrσθ−8GHεrnσrν−4GHεrnσθν)

4EGHεrn(2GHεrn−3EGεr−EHεrn+2GHεrnν)

) (9.43)

εθ = − (3EGεr − 3GHεr
n + EHεr

n) ·(
(EHεrnσr−EHεrnσθ−5GHεrnσr−GHεrnσθ+3EGεrσr−3EGεrσθ+4GHεrnσrν+8GHεrnσθν)

4EGHεrn(2GHεrn−3EGεr−EHεrn+2GHεrnν)

) (9.44)

While a clean analytical solution has not been achieved, the problem has been simplified

to a set of four non-linear ordinary differential equations as a function of r in Equations 9.18,

9.20, 9.43, and 9.44 with the four unknowns εr, εθ, σr, and σθ.

9.1.3.2 Finite Element Methodology and Results

A finite element method can be applied with a non-linear relation between stress and strain

prescribed by adjusting the material model relation. Additional material properties need to

be included in addition to the Poisson ratio of ν = 0.3 used to describe the elastic model.

A relatively low-strength, low-carbon A106-B steel [ASTM (2014)] was applied with a yield

strength of σY = 240 MPa, an ultimate strength of σU = 415 MPa, and an elastic modulus

of E = 200 GPa. Neglecting elastic strain, the Ramberg-Osgood relation is the same as the

Power-Hardening relation as previously shown in Equation 9.39. Typical Power-Harding pa-

rameters for low-carbon steel (H1 = 600 MPa; n1 = 0.21) [Callister (2005)] were converted
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to Ramberg-Osgood parameters (α offset = EH−n1σn1−1
Y = 687; n = 1

n1
) [Ramberg and Os-

good (1943); Dassault Systemes (2015)], and implemented as a �Plastic Deformation� material

condition [Dassault Systemes (2015)].

The two dimensional plane-strain geometry model was not analyzed for the case of uniform

corrosion plastic behavior; rather, the full three dimensional stress model described in the next

section was applied. The failure criteria was established as the internal pressure resulting in

the von Mises stress to equal the ultimate strength σU = 415 MPa. The uniform corrosion

results are plotted alongside the isolated pit corrosion results in Figure 9.16.

9.2 Isolated Pit Corrosion

The case of isolated pit corrosion is represented by a pipe with single hemispherical pit of

varying depth. In the model, the edges of the pit are infinitely sharp which will lead to an

infinite stress concentration under elastic loading; this infinitely sharp geometry does not exist

in real pits.

9.2.1 Pipe Geometry

Consider a pipe geometry of D
t = 7 under three different isolated pit corrosion conditions:

25%, 50%, and 75% wall loss. A cross-section image of the pipe is shown in Figure 9.14 and

one quarter of a three dimensional model section is shown in Figure 9.11.

9.2.2 Linear-Elastic Material

A linear-elastic material model is considered for analytical and finite element stress analysis

methodologies.

9.2.2.1 Analytical Methodology

The analytical solution for this geometry is not trivial as the elasticity partial differential

equations [Sadd (2009)] cannot be reduced to ordinary differential equations as a function of r

as is the case of uniform corrosion.
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9.2.2.2 Finite Element Methodology

While an analytical solution is not obvious, the finite element methodology can be applied

to discretized three dimensional geometries and solve the weak form of the partial differential

elasticity equations [Zienkiewicz et al. (2005)]. The previously described two dimensional plane-

strain model was expanded to a full three dimensional model. The ability to converge three

dimensional meshes was limited; therefore, the two dimensional plane-strain error analysis

results at r = a was used to prescribe a hexagonal quadratic order reduced integration element

type (C3D20R) [Dassault Systemes (2015)]. A unity pressure load condition was applied on

the inside radius surface of the cylinder and on the pit face surface; a zero perpendicular

displacement symmetric boundary condition was applied on the vertical boundary, horizontal

boundary, and longitudinal boundary intersecting the pit; a zero perpendicular displacement

was applied on the longitudinal boundary opposite the pit to mimic far-field behavior as a

�plane-strain� boundary condition; a free boundary condition naturally occurs on the outer

radial surface boundary; all boundary conditions are shown in Figure 9.11 along with the

various geometries considered.

Figure 9.11 Three dimensional stress geometries, boundary conditions, and mesh densities.
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9.2.2.3 Finite Element Results

The normalized von Mises stress field results are shown in Figures 9.12, 9.14, and 9.16. In

Figure 9.12, the same contour color range is applied in order to visualize the relative increase in

stress concentration. The highest stress concentrations occur at the edge of the pit and inside

surface. Only the relative stress values at this location among the three pit geometries are

of interest; the actual reported stress values are inherently false as the pit edges are infinitely

sharp which will lead to an infinite stress concentration under elastic loading.

9.2.3 Plastic Material

A plastic material model is considered for analytical and finite element stress analysis

methodologies.

9.2.3.1 Analytical Methodology

Similar to the elastic case, the analytical solution for this geometry is not obvious because

the strain definition, momentum balance, and non-linear material model partial differential

equations [Dowling (1999); Sadd (2009)] cannot be reduced to ordinary differential equations

as a function of r as is the case of uniform corrosion.

9.2.3.2 Finite Element Methodology and Results

The same finite element model geometry, element type, mesh density, and boundary con-

ditions were used as in the liner elastic case. The �Plastic Deformation� [Dassault Systemes

(2015)] material condition was applied with the same parameters in the plastic uniform corro-

sion case. The failure criteria was established as the internal pressure such that the von Mises

stress equals the ultimate strength σU = 415 MPa. The von Mises stress field results are shown

in Figure 9.13 and plotted in Figure 9.16. In Figure 9.13, the same contour color range is

applied showing that the location of the stress concentration does not occur at the infinitesimal

edge between the pit wall and inside surface as in the case of elastic deformation; this edge is

now allowed to yield and plastically deform. Instead, the highest stress concentrations occur

at the deepest point in the pit.
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Figure 9.12 Linear elastic material normalized von Mises stress results.

Figure 9.13 Plastic material von Mises stress results.
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9.3 Discussion

The cases of uniform and isolated pit corrosion, linear-elastic and plastic material models,

and analytical and finite element solution method combinations are summarized in Table 9.1.

Table 9.1 Summary of Cases Evaluated

Corrosion

Type

Material

Model

Solution

Method
Results Status

Uniform

Linear-Elastic

Analytical General solution provided.

Finite

Element

Demonstrated the method with 2D plane-strain

model. Provided convergence results.

Plastic

Analytical
General solution possible, but unable to solve

non-linear ODE. Reduced problem provided.

Finite

Element

Demonstrated method with 3D stress. Unable

to provide convergence results with node limit.

Isolated Pit

Linear-Elastic

Analytical
General solution not trivial. Geometry does not

allow reduction of full field PDEs to ODEs.

Finite

Element

Demonstrated method with 3D stress. Unable

to converge due to infinitesimal edge.

Plastic

Analytical
General solution not trivial. Geometry does not

allow reduction of full field PDEs to ODEs.

Finite

Element

Demonstrated method with 3D stress. Unable

to provide convergence results with node limit.

The linear-elastic isolated pit corrosion is compared to an equivalent uniform corrosion

metal loss based on the maximum pit depth as shown in Figure 9.14. The reported maximum

von Mises stress values are at the edge of the pit wall and inside surface wall as shown in

Figure 9.12. These stress values are false as the edges of the pit are infinitely sharp which

will lead to an infinite stress concentration under elastic loading. This type of error can be

observed from the reported relation at 25% wall loss that goes against intuition where the

isolated pit has a larger normalized von Mises stress than a comparable uniform corrosion wall

loss. A further refinement of the isolated pit mesh was not completed due to a limitation in

the number of available node values, but regardless, the maximum stress value of this model

will not converge.

The linear-elastic and plastic material isolated pit corrosion is compared to an equivalent

uniform corrosion metal loss based on the maximum pit depth as shown in Figure 9.16; the
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Figure 9.14 A comparison of internal pressure at failure for linear-elastic uniform corrosion

and linear-elastic isolated pit corrosion.

failure criteria for elastic and plastic material are based on the material yield stress and ultimate

stress values correspondingly. As the ultimate stress is greater than the yield stress, all cases

of plastic material fail at a higher internal pressure than linear-elastic material. Unlike the

isolated pit elastic results, the plastic results are more intuitive where a single isolated pit will

result in failure at a higher pressure as compared to an equivalent uniform wall loss. The

maximum von Mises stress location for the plastic isolated pit is at the maximum pit depth as

shown in Figure 9.13. The maximum stress location is not at the infinitesimal edge between

the pit wall and inside surface as in the case of elastic material. In the plastic case, this edge

is now allowed to yield and plastically deform. A further refinement of the plastic material

isolated pit mesh was not completed due to a limitation in the number of available node values,

but if completed, the maximum stress value of this model may converge.

In general, the three dimensional stress mesh densities are too coarse. A rigorous con-

vergence test was not completed for any of the three dimensional models due to the limited

number of available nodes. The maximum displacement convergence could be investigated
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Figure 9.15 A possible gradient mesh density.

for the linear-elastic case and the maximum stress convergence could be investigated for the

plastic case. It would also be prudent to make the model larger to investigate (and possi-

bly eliminate) the plane-strain zero perpendicular displacement boundary condition. Finally,

there is also clear evidence in Figure 9.13 of hour-glassing in the case of uniform corrosion 0%

wall loss. The reduced order integration elements exhibit this hour-glassing effect due to the

under-constrained nature of reduced integration elements with a combination of an insufficient

number of elements. The full integration elements were attempted, and provided a visually

more appealing result; however, the full integration elements were less accurate at r = a in

the elastic case for both two dimensional plane-strain and full three dimensional stress models.

The best approach in the future would be to increase the mesh density in a gradient manner

as shown in Figure 9.15 such that the density is greatest at the location of the pit. As seen in

the case of two dimensional plane-strain error analysis, there should be at least two element

rows in the radial direction for linear or quadratic element orders.

Also, the finite element results are not general, and based on specific geometry and material

values. The results are not directly transferable to other geometries and materials.

Finally, the failure criteria result only considers the internal pressure loading and is not

conservative. Static loads such as pipe weight and support reactions, and dynamic loads such

as thermal induced strain and vibration, were neglected; these loads may be very significant in

low pressure and large diameter applications.



www.manaraa.com

211

Figure 9.16 A comparison of internal pressure at failure for linear-elastic and plastic materials

for uniform corrosion and isolated pit corrosion mechanisms.
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9.4 Summary

Progress was made on the case combinations of uniform and isolated pit corrosion, linear-

elastic and plastic material models, and analytical and finite element solution methods as

summarized in Table 9.1. The various geometry and material model cases may be applied

to generate prognosis information with input from NDE or SHM data with consideration for

measurement uncertainty.
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CHAPTER 10. CONCLUSION

Naphthenic acid corrosion occurs at high temperatures in oil refinery plants and can be

difficult to predict as discussed in Chapter 1 as the research motivation. Also described were

i) crude oil trends related to corrosion, ii) the principals of naphthenic acid corrosion, and

iii) Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) technology

design considerations and parameters.

A general review of NDE background material was summarized in Chapter 2 for optical,

electromagnetic, radiographic, acoustic emission, ultrasonic, and other methods. The charac-

teristics of the various measurement methods were classified and compared for a high temper-

ature corrosion monitoring application. Ultimately, a permanently installed bulk wave ultra-

sonic thickness (UT) SHM technology was determined to be an applicable method to monitor

localized high-temperature internal pitting corrosion of steel pipe. A review of commercially

available UT SHM bulk wave technology and a brief discussion on guided wave technology was

included, as well as a review of rough surface elastic wave scattering.

A sensor produced by the sol-gel ceramic fabrication process has the potential to be deployed

to monitor such pitting corrosion, and to help investigate the mechanisms causing such corro-

sion. Thid sol-gel sensor technology was described in Chapter 3. In addition, the propagating

longitudinal and shear elastic wave beam profile generated by a thick-film sol-gel transducer was

experimentally characterized using the dynamic photoelastic visualization method; images of

the wave-field were compared with semi-analytical modeling results. This thick-film transducer

type was also characterized using an electric circuit model as described in Appendix 1.

After transducer characterization, various elastic wave propagation and flat surface reflec-

tion bounding case scenarios for the ultrasonic bulk wave corrosion monitoring application were

modeled with elastodynamic simulation software in Chapter 4.
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In Chapter 5, the classic elastic wave scattering theory for an embedded spherical cavity

was reviewed. New scattering theory from the seismology community for a hemisphere in a

stress-free half-space boundary was extended with the derivation of a far-field scattering am-

plitude term of interest in NDE measurement applications. This theory extension was applied

to a hemispherical pit geometry to represent initial localized corrosion. Data from this new

scattering theory was compared with immersion measurement experimental results by applying

principals from the Thompson-Gray measurement model for a flat surface in Chapter 5, and

for a curved pipe surface in Chapter 6. This initial model validation work may provide a basis

for a possible new hemispherical pit geometric reference standard for ultrasonic NDE corrosion

applications. The hemispherical pit scattering work was extended to experimental measure-

ments and semi-analytical elastodynamic modeling in Chapter 7 for a contact measurement

configuration.

In Chapter 8, the UT SHM measurement accuracy, precision, and reliability were described

with a new weighted censored relative likelihood methodology to consider the propagation

of asymmetric uncertainty in quantifying thickness measurement error. This new statisti-

cal method was experimentally demonstrated and applied to thickness measurement data ob-

tained in pulse-echo and pitch-catch configurations for various time-of-flight thickness calcu-

lation methods. A reliability analysis of a structural health monitoring sensor system was

presented to investigate time domain independent and dependent sources of variability.

Finally, the plastic behavior of a corroded steel pipe was modeled with analytical and finite

element methods to generate prognosis information in Chapter 9.

The overall hypothesis investigated was to understand if such sol-gel sensor technology can

be used to monitor localized high-temperature corrosion with acceptable measurement accuracy

and precision as defined in Table 1.1.
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10.1 Novel Contributions

The following is a brief summary of the novel contributions in this dissertation.

� Demonstration of the laboratory photoelastic optical imaging technique and associated

image processing to characterize the incident longitudinal and shear wave beam profile

of a thick-film sol-gel transducer.

� Extension of elastic wave scattering theory to derive a far-field scattering amplitude term

for the case of a hemispherical pit, initial work towards experimental validation of such

theory, and the potential basis for a new hemispherical pit calibration reference standard.

� Development and demonstration of a weighted censored relative likelihood statistical

analysis method to determine ultrasonic thickness measurement accuracy and precision

considering propagation of asymmetric uncertainty.

10.2 Future Work

Extensions of the current work to be considered in future studies are grouped by charac-

terization, scattering, statistics, and prognosis.

10.2.1 Characterization

Regarding sol-gel transducer characterization, future work could be to find the necessary

complex material parameter values for the Lukacs Model analysis, complete an analysis for

the Mason Circuit, Redwood, KLM, and Reeder-Winslow Models, and collect real electrical

impedance values from a network analyzer on various sol-gel transducers to compare with the

theoretical models and identify which model is the most representative.

The photoelastic imaging technique measures the dynamic stress in a transparent material

as a two dimensional planar elastic field. While work has been completed to generate a three

dimensional field via tomographic imaging from the Schlieren visualization method [Caliano

et al. (2012)], a tomogram has yet to be generated from ultrasound photoelastic images. It
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would a natural extension to generate a three dimension beam profile from a traditional con-

tact transducer as well as a sol-gel transducer to quantify beam profile antisymmetry with

a photoelastic tomographic imaging technique to capture both longitudinal and shear wave

modes.

10.2.2 Scattering

Discrepancies between theory and measurement from the hemispherical pit from on a flat

plate or curved surface could be a result of measurement error, incorrect theory, or incorrect

methods to transfer the received voltage to scattering amplitude. The following items could be

further explored in future model validation studies:

� The ideal velocity ratio values may be too large by taking the field maximum ideal velocity

ratio value at each frequency. This does not completely consider scattering from the half-

space boundary; evaluation of a -6dB average, >10% integral average, or other method

to determine the ideal velocity ratio values may be more accurate.

� Further investigate the scale factor and shift factor adjustment process as a result of mea-

surement system linearity over a range of dB gain values to account for the normalizing

variable L in Equation 5.69.

� Further investigate the sensitivity error bar generation method shown in Figures 5.32 and

5.33.

� Evaluate over a broader range of ka values using different transducers or different diameter

hemispherical pits.

� Reconfigure immersion experiment to have steel block back-wall interface with air such

that the acoustic impedance reflection ratio is more truly a stress-free half-space R ≈ 1

to better match the theory to be validated. The current configuration with water has

as acoustic impedance reflection ratio R ≈ 0.9 and is not truly a stress-free half-space

as some of the longitudinal wave mode energy is transmitted through the back-wall, and

through the hemispherical pit.
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� Investigate the definition and use of water path distance as compared to physical distance

for the following steps in the scattering amplitude validation process: i) the initial cal-

ibration block design simulation, ii) generating of the acoustic/elastic transfer function,

iii) defining the Multi-Gaussian beam model, iv) determining the reference spectrum,

v) collecting the reference measurement, and vi) collecting the pit measurement.

� Evaluate using different materials other than A106B carbon steel to test the hemispherical

pit scattering amplitude theory at longitudinal to shear wave speed ratios besides ≈ 1.82.

� Evaluate at different temperatures to understand if the approach is transferable to higher

temperature applications for precise measurement of pits in materials with greater ma-

terial wave speed and attenuation uncertainty as a result of bulk and gradient spatial

temperature variations.

� Investigate the sensitivity of the current theory, or explore other methods, considering

other pit geometries such as hemiellipsoidal pits or multiple pits.

� For the curvature immersion experiment in Chapter 6, further investigate the influence

of curvature regarding the acoustic/elastic function. Consider various specimen radius to

beam area ratios.

� For the curvature immersion experiment in Chapter 6, complete the analysis using a

system function gathered from the front-wall (instead of the first back-wall).

� For the curvature immersion experiment in Chapter 6, gather more accurate attenua-

tion measurement coefficient values by taking measurements on a sample with a greater

thickness to curvature ratio.

� For the curvature immersion experiment in Chapter 6, further investigate the L = 0.1 cm

and ka = 1 shift normalization factors.

� For the curvature immersion experiment in Chapter 6, explore an attenuation curvature

correction to address the discrepancy shown in Figure 6.42.
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Finally, the amplitude response from the FBH experimental measurements may be com-

pared with an analytical model [Sedov et al. (1992)] in future work.

10.2.3 Statistics

There is still a need to develop a robust statistical framework to quantify the multi-

parameter and multi-domain sources of independent and dependent variation and uncertainty

in structural health monitoring systems.

Future work could also be to apply the weighted censored relative likelihood statistical

analysis technique to quantify asymmetric measurement precision of additional thickness cal-

culation methods under different environmental conditions such as high temperature, rough

back-wall surface, and system degradation with an intended application to monitor naphthenic

acid corrosion in refineries. This could also be a use case to consider time domain sources of

uncertainty and explore the relation between independent and dependent sources of variabil-

ity and uncertainty. The resulting concept would be that the uncertainty of measurements in

more extreme environments could be quantified for various factors such as temperature, sur-

face roughness, and system degradation. In addition, various pitch-catch and transducer array

configurations and different thickness calculation methods could be considered.

Specifically regarding the reliability study, recommended future work would be to retest a

new sensor and electronics system that has incorporated the better grounding design from the

start of the test in an effort to obtain a more accurate initial reliability prediction of the overall

improved system.

10.2.4 Prognosis

The current prognosis analysis could be extended as follows:

� Increase the number of nodes in the three dimensional models for i) mesh convergence,

ii) investigation of the plane-strain boundary, and iii) to eliminate of hour-glassing.

� Consider various diameter-to-thickness pipe geometries.

� Consider various mechanical material properties.
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� Investigate other degradation profiles and stress concentrations such as a hemiellipsoidal

pit, or combinations of pits.

� Investigate other plastic material behavior models such as a high temperature viscoplas-

ticity model.
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APPENDIX A. CIRCUIT MODELING

An understanding of piezoelectric transducer behavior in an attempt to characterize the

performance of thick-film sol-gel transducers is based primarily on Kino’s transducer charac-

terization work [Kino (1987)], but complimented with other general piezoelectric transducer

characterization references [Meeker (1996); Lu (2012); Sherrit and Mukherjee (2012)], as well

as specific examples of air-backed thick-film transducer impedance characterization [Maréchal

et al. (2006); Dorey et al. (2007); Pardo et al. (2010); Ali et al. (2015); Mahmood et al. (2015)].

There are various circuit models available to characterize an air backed thick-film sol-gel

transducer: Three-Port-Network, Mason Circuit, Redwood, KLM, Reeder Winslow [Reeder

and Winslow (1969)], and a model specifically for air-back thick-film sol-gel transducers [Lukacs

et al. (1999, 2000)]. This work considers only the Three-Port-Network and Lukacs Models.

A.1 Three-Port-Network Model

The Three-Port-Network Model is used to characterize an air-backed thick-film sol-gel trans-

ducer. The theory is first introduced followed by the model analysis.

A.1.1 Theory

A piezoelectric transducer can be modeled in one dimension as a three-port-network as

shown in Figure A.1 with the corresponding set of relations in matrix form in Equation A.1

with F1 as the external force applied to the back-surface of the transducer, F2 as the external

force applied to the front-surface of the transducer, v1 as the particle velocity at the back-

surface of the transducer, v2 as the particle velocity at the front-surface of the transducer, V3

as the voltage across the transducer, I3 as the current across the transducer, ZC as the material

acoustic impedance of the transducer, βa as as the stiffened acoustic propagation constant, l
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as the transducer thickness, h as the transmitting constant, ω as the angular frequency, and

C0 as the clamped (zero strain) capacitance of the transducer [Kino (1987)].

Figure A.1 The 1) transducer modeled as a three-port black box and the 2) relation of three-

-port notation to the physical parameters of the transducer. Based on similar

figure previously published [Kino (1987)].
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The Equation A.1 relations are used to model the transducer electrical impedance Z3 as

shown in Equation A.2 with kT as the piezoelectric coupling constant for a transversely clamped

material, Z1 as the backing material acoustical impedance, and Z2 as the substrate material

acoustical impedance.

Z3 =
1
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2 j (Z1 + Z2)ZC sinβal − 2ZC
2
(
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)[(
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βal
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(A.2)
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The angular frequency ω is described in Equation A.3 with f as the frequency corresponding

to transducer vibration.

ω = 2πf (A.3)

The clamped (zero-strain) capacitance of the transducer C0 is described in Equation A.4

with εS as the transducer material dielectric constant of permittivity with zero or constant

strain, and A as the transducer electrode surface area.

C0 =
εSA

l
(A.4)

The transducer material dielectric constant of permittivity with zero or constant strain εS

is described in Equation A.5 with e as the piezoelectric stress constant, cE as elastic constant in

the presence of a constant or zero electrical field, and K as the piezoelectric coupling constant.

εS =
e2

cEK2
(A.5)

The piezoelectric coupling constant K is described in Equation A.6 with cD as stiffened

elastic constant.

K =

√
cD

cE
− 1 (A.6)

The piezoelectric coupling constant for a transversely clamped material kT is described in

Equation A.7.

kT =

√
1− cE

cD
(A.7)

The stiffened acoustic propagation constant βa is described in Equation A.8 with ρm0 ≡ ρ

as the transducer mass density in the stationary state.

βa = ω

√
ρm0

cD
(A.8)

An example of the real and imaginary electrical impedance model and experimental data

for a piezoelectric transducer can be found in literature [Kino (1987)].
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A.1.2 Analysis

For an air-backed sol-gel transducer with Z1 = 0, the terms in Equations A.2-A.8 can be

combined such that the transducer electrical impedance Z3 is described in Equation A.9 as a

function of frequency f , substrate acoustic impedance Z2, transducer geometry A and l, and

transducer material properties Zc, e, c
D, cE , and ρ.

Z3 =
l
(
cE − cD

)
2πfAe2

 cD − cE

2πflcD
√

ρ
cD

2Zc
2
[
cos
(
2πfl

√
ρ
cD

)
− 1
]
+ Z2Zc sin

(
2πfl

√
ρ
cD

)
j

Zc
2 sin

(
2πfl

√
ρ
cD

)
− Z2Zc cos

(
2πfl

√
ρ
cD

)
j

+ 1

 j (A.9)

The analysis is applied to an longitudinal mode air-backed thick-film sol-gel transducer

of 4.0 mm × 4.0 mm square dimension. The transducer material properties for PZT-5A are

described in Table A.1 [Kino (1987)] with the elastic constant subscript 33 referring to the lon-

gitudinal elastic constant relating longitudinal stress and strain components in the z-direction

and the piezoelectric stress constant subscript z3 referring to the ratio of the longitudinal stress

in the z-direction to the E field in the z-direction.

A central frequency f0 of 10MHz and a central piezoelectric material thickness l0 of 150 µm

is established based on the characteristic range of properties from available sol-gel transducers.

The real and imaginary transducer electrical impedance for the Three-Port-Network Model with

Equation A.9 and Table A.1 is shown in Figure A.2. The general pattern of the theoretical

model in Figure A.2 is consistent with the typical general pattern of the theoretical model and

collected data [Kino (1987)]. The real and imaginary transducer electrical impedance values for

a thickness range from l = 0 to l = 2l0 are shown in Figure A.3. The real transducer electrical

impedance for a range of thickness values from l = 0 to l = 2l0 is shown in Figure A.4.
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Table A.1 Three-Port-Network Model Material and Geometry Properties

PZT-5A Elastic constant (zero electric field) cE33 1.11× 1011 N/m2

PZT-5A Elastic constant (stiffened) cD33 1.47× 1011 N/m2

PZT-5A Piezoelectric stress constant ez3 15.8 C/m2

PZT-5A Density ρ 7750 kg/m3

Backing Acoustic Impedance - Air Z1 0 kg/m2s

Transducer Acoustic Impedance - PZT Zc 3.4× 107 kg/m2s

Substrate Acoustic Impedance - Steel Z2 4.6× 107 kg/m2s

Electrode Surface Area A 1.6× 10−5 m2

Figure A.2 The real and imaginary electrical impedance for a Three-Port-Network model

with Equation A.9, Table A.1, a central frequency f0 of 10MHz, and a transducer

thickness l0 of 150 µm.
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Figure A.3 The real and imaginary electrical impedance for a Three-Port-Network model

with Equation A.9, Table A.1, a central frequency f0 of 10MHz, and a transducer

thickness range from 0 to 300 µm.

Figure A.4 The real electrical impedance for a Three-Port-Network model with Equation A.9,

Table A.1, a central frequency f0 of 10MHz, and a transducer thickness range from

0 to 300 µm.
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A.2 Lukacs Model

The Lukacs Model is used to characterize an air-backed thick-film sol-gel transducer. The

theory is first introduced followed by the model analysis.

A.2.1 Theory

The Lukacs Model theory is based on an air-backed thick-film sol-gel transducer as described

in Figure A.5. The electrical impedance Z3 of the transducer is described in Equations A.10-

A.13 [Lukacs et al. (1999, 2000)] with Z∗ as a complex impedance offset to account for stray

inductance during measurements, βSp as the inverse permittivity of the piezoelectric material at

constant strain, lp and ls as the thickness of the piezoelectric material and substrate material,

hp as the piezoelectric transmitting constant, vp and vs as the velocity of the piezoelectric

material and substrate material, cDp and cDs as the stiffened elastic constant of the piezoelectric

material and substrate material, and with uss, uL, and uR shown only as intermediate variables.

Figure A.5 Lukacs Model transducer schematic and boundary conditions. Based on similar

figure previously published [Lukacs et al. (1999)].
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The transducer electrical impedance Z3 in Equations A.10-A.13 is derived using the one-

dimensional wave equation and linear piezoelectric equations with the following geometric con-

ditions: the top electrode diameter must be much larger than the thickness of the piezoelectric

material in order to only excite the thickness-mode resonance, the diameter of the substrate

must be much larger than its thickness in order to prevent lateral-mode excitation, any energy

that reverberates within the substrate must remain within the near-field of the transducer un-

til it has been sufficiently dissipated (depends on elastic stiffness of piezoelectric and substrate

layers), and finally, the electrodes must be thin with respect to the thickness of the piezoelectric

film.

Z3 = Z∗ +
j

ωA

{
−βSp lp + hp

uL
uR

sin

(
ωlp
vp

)
− hpuss

[
cDp ω

vp

uL
uR
− hp

][
cos

(
ωlp
vp

)
− 1

]}
(A.10)
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) (A.11)
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+ usshp sin
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vp

)
(A.12)
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(
ωlp
vp

)
+
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D
p ω

vp
sin

(
ωlp
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)
(A.13)

The velocity of the piezoelectric material vp is described in Equation A.14 with ρp as the

piezoelectric material density in the stationary state.

vp =

√
cDp
ρp

(A.14)

The stiffened elastic constant of the substrate material cDs is described in Equation A.15

with ρs as the substrate material density in the stationary state.

cDs = vs
2ρs (A.15)
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The inverse permittivity of the piezoelectric material at constant strain βSp is described in

Equation A.16 with εSp as piezoelectric material dielectric constant of permittivity with zero or

constant strain.

βSp =
1

εSp
(A.16)

The piezoelectric transmitting constant hp is described in Equation A.17 with ep as the

piezoelectric material piezoelectric stress constant.

hp =
ep
εSp

(A.17)

A.2.2 Analysis

The terms in Equations A.3, A.5, A.6, and A.10–A.17 can be combined while neglecting the

complex electrical impedance offset Z∗ such that the transducer electrical impedance Z3 can

be described as a function of frequency f , geometry A, lp, and ls, substrate material properties

ρs and vs, and piezoelectric material properties ep, c
D
p , cEp , and ρp.

The Lukacs Model requires the complex form of the substrate and piezoelectric material

properties, and unfortunately these values are not readily available. Therefore, the analysis did

not result in true impedance values when only the real form of the substrate and piezoelectric

material properties were used. Regardless, this erroneous analysis without the complex form of

the material properties is applied to the same longitudinal mode air-backed thick-film sol-gel

transducer of 4.0 mm × 4.0 mm square dimension, with the same transducer material properties

for PZT-5A and steel substrate properties as described in Table A.2 [Kino (1987)], and the same

central frequency f0 of 10MHz and a central piezoelectric material thickness lp = l0 of 150 µm.

The real and imaginary transducer electrical impedance for the Lukacs Model with Equation

A.10 and Table A.2 is shown in Figure A.6. As previously described, the values in Figure A.6

are erroneous as complex material properties were not used.

The real and imaginary transducer electrical impedance values for a thickness range from

lp = 0 to lp = 2l0 are shown in Figure A.7. The real transducer electrical impedance for a

range of thickness values from lp = 0 to lp = 2l0 is shown in Figure A.8.
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Table A.2 Lukacs Model Material and Geometry Properties

PZT-5A Elastic constant (zero electric field) cEp 33
1.11× 1011 N/m2

PZT-5A Elastic constant (stiffened) cDp 33
1.47× 1011 N/m2

PZT-5A Piezoelectric stress constant epz3 15.8 C/m2

PZT-5A Density ρp 7750 kg/m3

Steel Density ρs 7900 kg/m3

Steel Longitudinal Velocity vs 5900 m/s

Electrode Surface Area A 1.6× 10−5 m2

Steel Substrate Thickness ls 1× 10−4 m

Figure A.6 The real and imaginary electrical impedance for a Lukacs model with Equation

A.10, Table A.2, a central frequency f0 of 10MHz, and a transducer thickness l0
of 150 µm.
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Figure A.7 The real and imaginary electrical impedance for a Lukacs model with Equation

A.10, Table A.2, a central frequency f0 of 10MHz, and a transducer thickness

range from 0 to 300 µm.

Figure A.8 The real electrical impedance for a Lukacs model with Equation A.10, Table A.2,

a central frequency f0 of 10MHz, and a transducer thickness range from 0 to 300

µm.
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A.3 Summary

Various transducer models were presented and analyzed for an air-backed thick-film sol-gel

transducer application. The Three-Port-Network Model appears to have a realistic pattern for

real and imaginary impedance values. The Lukacs Model analysis is not applicable as only the

real piezoelectric material parameters were used instead of the required complex piezoelectric

material parameters.
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APPENDIX B. TRADEMARKS

CALIPERAY is a registered trademark of MISTRAS Group, Inc.

COSASCO is a registered trademark of Rohrback Cosasco Systems, Inc.

EMERSON is a registered trademark of Emerson Electric Co.

GE is a registered trademark of General Electric Company

JMP is a registered trademark of SAS Institute Inc.

MATLAB is a registered trademark of The MathWorks, Inc.

MISTRAS is a registered trademark of MISTRAS Group, Inc.

PANAMETRICS is a registered trademark of GE Infrastructure Sensing, Inc.

PERMASENSE is a registered trademark of Permasense Limited

RIGHTRAX is a registered trademark of GE Inspection Technologies, LP General Electric

Company

SMART PIMS is a registered trademark of Sensor Networks, Inc.

SOUNDSAFE is a registered trademark of Sonotech, Inc.

ULTRACORR is a registered trademark of Rohrback Cosasco Systems, Inc.
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